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Call-site Sensitivity vs Object Sensitivity
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1981 20222002 2010

Object sensitivity appeared in 2002
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1981 20222010

Object sensitivity appeared in 2002

• Considers “What”
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Call-site Sensitivity vs Object Sensitivity

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}
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• An example shows the limitation of CFA and strength of object sensitivity

class C{
  id(v){
    return v;}
  id1(v){
    return this.id(v);} 
}
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Call-site Sensitivity vs Object Sensitivity

main(){
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• An example shows the limitation of CFA and strength of object sensitivity

class C{
  id(v){
    return v;}
  id1(v){
    return this.id(v);} 
}
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Call-site Sensitivity vs Object Sensitivity

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
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• An example shows the limitation of CFA and strength of object sensitivity

class C{
  id(v){
    return v;}
  id1(v){
    return this.id(v);} 
}

9

Also an identity function implemented with id



Call-site Sensitivity vs Object Sensitivity

main(){
c1 = new C();//C1
c2 = new C();//C2
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• An example shows the limitation of CFA and strength of object sensitivity

class C{
  id(v){
    return v;}
  id1(v){
    return this.id(v);} 
}
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Call-site Sensitivity vs Object Sensitivity

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}
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class C{
  id(v){
    return v;}
  id1(v){
    return this.id(v);} 
}

Limitation of CFA :
Nested method calls

• An example shows the limitation of CFA and strength of object sensitivity
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Call-site Sensitivity vs Object Sensitivity

class C{
  id(v){
    return v;}
  id1(v){
    return this.id(v);} 
}
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Call-site Sensitivity vs Object Sensitivity
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• An example shows the limitation of CFA and strength of object sensitivity
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Call-site Sensitivity vs Object Sensitivity

class C{
  id(v){
    return v;} 
}
main(){
  c1 = new C();//C1
  a = (A) c1.id(new A());//query1
  b = (B) c1.id(new B());//query2
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}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

6,7,8main
[*]

id
[C1]

• An example shows the limitation of object sensitivity and strength of CFA
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main(){
  c1 = new C();//C1
  a = (A) c1.id(new A());//query1
  b = (B) c1.id(new B());//query2
  c = (B) c1.id(new C());//query3
}

Call-site Sensitivity vs Object Sensitivity
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}
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• An example shows the limitation of object sensitivity and strength of CFA

The three method calls share the same receiver object C1
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Call-site Sensitivity vs Object Sensitivity

class C{
  id(v){
    return v;}
} main
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  a = (A) c1.id(new A());//query1
  b = (B) c1.id(new B());//query2
  c = (C) c1.id(new C());//query3
}

• An example shows the limitation of object sensitivity and strength of CFA
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Call-graph of 1-CFA
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Call-site Sensitivity vs Object Sensitivity

…

1981 20222002 2010

VSObj CFA

Call-site Sensitivity vs Object Sensitivity
• Call-site Sensitivity and Object Sensitivity had been actively compared
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Call-site Sensitivity vs Object Sensitivity

…

1981 20222002 2010

Obj CFAObj wins Obj wins Obj wins Obj wins

Call-site Sensitivity vs Object Sensitivity
• Object Sensitivity outperformed call-site sensitivity
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1981 20222002 2010

Obj

Call-site Sensitivity vs Object Sensitivity

…
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• Lectures have taught the superiority of object sensitivity



1981 20222002 2010

Obj

Call-site Sensitivity vs Object Sensitivity

…
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I was also taught like that

• Lectures have taught the superiority of object sensitivity



Researches on Object Sensitivity

1981 20222002 2010

Obj

Call-site Sensitivity vs Object Sensitivity

…

• Researches focused on improving Object Sensitivity
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1981 20222002 2010

“We do not consider call-site sensitive analyses …”
- Li et al. [2018]

CFA

Call-site Sensitivity vs Object Sensitivity
• Call-site Sensitivity has been ignored
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1981 20222002 2010

“We have included 2cs+h to demonstrate the superiority 
of object sensitivity over call-site sensitivity”

- Tan et al. [2016]

CFA

Call-site Sensitivity vs Object Sensitivity
• Call-site Sensitivity has been ignored
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1981 20222002 2010

“… we do not discuss our approach for call-site sensitivity”
- Jeon et al. [2019]

CFA

Call-site Sensitivity vs Object Sensitivity
• Call-site Sensitivity has been ignored
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1981 20222002 2010

“… we do not discuss our approach for call-site sensitivity”
- Jeon et al. [2019]

CFA

Call-site Sensitivity vs Object Sensitivity
• Call-site Sensitivity has been ignored
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I also strongly dismissed call-site sensitivity



1981 20222002 2010

Call-site Sensitivity vs Object Sensitivity

Currently, call-site sensitivity is known as a bad context
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1981 20222002 2010 2018

A technique context tunneling is proposed

Context tunneling can improve both 
call-site sensitivity and object sensitivity

Jeon et al. [2018]

Call-site Sensitivity vs Object Sensitivity
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Call-site Sensitivity vs Object Sensitivity

class C{
  id(v){
    return v;}
  id1(v){
    return id0(v);} 
}
main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}
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• Context tunneling can remove the limitation of call-site sensitivity
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1-CFA with context tunneling 
(T= {4})

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id(new A());//query1
b = (B) c2.id(new B());//query2
}

Call-site Sensitivity vs Object Sensitivity
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• Context tunneling can remove the limitation of call-site sensitivity

id
[10]

Tunneling abstraction:
Determines where to apply context tunneling
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Call-site Sensitivity vs Object Sensitivity

class C{
  id(v){

return v;}
  id1(v){

return id0(v);}
}
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• Context tunneling can remove the limitation of call-site sensitivity

1-CFA with context tunneling 
(T= {4})

Unimportant call-sites that should not be used as context elements



Call-site Sensitivity vs Object Sensitivity

class C{
  id(v){

return v;}
  id1(v){

return id0(v);}
}
main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
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Apply context tunneling:
Inherit caller method’s context
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• Context tunneling can remove the limitation of call-site sensitivity

1-CFA with context tunneling 
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Call-site Sensitivity vs Object Sensitivity

class C{
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1-CFA with context tunneling 
(T= {4})

With tunneling, 1-CFA separates the nested method calls



Call-site Sensitivity vs Object Sensitivity

class C{
  id(v){
    return v;} 
}
main(){
  c1 = new C();//C1
  a = (A) c1.id(new A());
  b = (B) c1.id(new B());
  c = (C) c1.id(new C());
}
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• Object sensitivity still suffers from its limitation
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Call-graph of 1-Obj with 
tunneling T



Call-site Sensitivity vs Object Sensitivity

class C{
  id(v){
    return v;}
}
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• Object sensitivity still suffers from its limitation
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Unable to separate the 
three method calls with the 

two contexts

Unable to separate the 
three method calls with the 

two contexts
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  b = (B) c1.id(new B());
  c = (C) c1.id(new C());
}



Call-site Sensitivity vs Object Sensitivity

class C{
  id(v){
    return v;}
}
main(){
 c1 = new C();//C1
 a = (A) c1.id(new A());
 b = (B) c1.id(new B());
 c = (C) c1.id(new C());
}
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• Object sensitivity still suffers from its limitation
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Call-site sensitivity easily separates the three method calls



• Object sensitivity still suffers from its limitation

Call-site Sensitivity vs Object Sensitivity

class C{
  id0(v){
    return v;}
}
main(){
 c1 = new C();//C1
 a = (A) c1.id(new A());
 b = (B) c1.id(new B());
 c = (B) c1.id(new C());
}
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When context tunneling is included

• Limitation of call-site sensitivity is removed

• Limitation of object sensitivity is not removed
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• Object sensitivity still suffers from its limitation

Call-site Sensitivity vs Object Sensitivity

c
  
  
}
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 b = (B) c1.id(new B());
 c = (B) c1.id(new C());
}

Call-graph of 1-object sensitivity with tunneling
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When context tunneling is included

• Limitation of call-site sensitivity is removed

• Limitation of object sensitivity is not removed

Our claim
If context tunneling is included,

call-site sensitivity is more precise than object sensitivity
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#alarms

Given state-of-the art 1-object 
sensitivity with tunneling

• Obj2CFA transforms a given object sensitivity into a more precise CFA
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#alarms

• Obj2CFA transforms a given object sensitivity into a more precise CFA
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#alarms

• Obj2CFA transforms a given object sensitivity into a more precise CFA
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• Obj2CFA transforms a given object sensitivity into a more precise CFA



Detail of Obj2CFA
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Technique 1: Simulation
class C{
  id(v){return v;}
  id1(v){return id(v);}
  foo(){
    A a = (A) this.id(new A());}//query1
    B b = (B) this.id(new B());}//query2
}
main(){
  c1 = new C(); //C1
  c2 = new C(); //C2
  c3 = new C(); //C3
  A a = (A) c1.id1(new A());//query3
  B b = (B) c2.id1(new B());//query4
  c3.foo();
}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15: 47

• Running example to illustrate Simulation



Technique 1: Simulation
class C{
  id(v){return v;}
  id1(v){return id(v);}
  foo(){
    A a = (A) this.id(new A());}//query1
    B b = (B) this.id(new B());}//query2
}
main(){
  c1 = new C(); //C1
  c2 = new C(); //C2
  c3 = new C(); //C3
  A a = (A) c1.id1(new A());//query3
  B b = (B) c2.id1(new B());//query4
  c3.foo();
}
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15:

Limitation of conventional 1-CFA
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Technique 1: Simulation
class C{
  id(v){return v;}
  id1(v){return id(v);}
  foo(){
    A a = (A) this.id(new A());}//query1
    B b = (B) this.id(new B());}//query2
}
main(){
  c1 = new C(); //C1
  c2 = new C(); //C2
  c3 = new C(); //C3
  A a = (A) c1.id1(new A());//query3
  B b = (B) c2.id1(new B());//query4
  c3.foo();
}

1:
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4:
5:
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7:
8:
9:
10:
11:
12:
13:
14:
15:

• Running example to illustrate Simulation

Limitation of object sensitivity
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Technique 1: Simulation
• Given object sensitivity is conventional 1-object sensitivity (e.g., T = )∅

class C{
  id(v){return v;}
  id1(v){return id(v);}
  foo(){
    A a = (A) this.id(new A());}//query1
    B b = (B) this.id(new B());}//query2
}
main(){
  c1 = new C(); //C1
  c2 = new C(); //C2
  c3 = new C(); //C3
  A a = (A) c1.id1(new A());//query3
  B b = (B) c2.id1(new B());//query4
  c3.foo();
}
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1objH+T (T = )∅
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Technique 1: Simulation

1objH+T (T = )∅

id1
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id1
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main
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id
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id
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3
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5,6

12
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14

Simulation T’ = {3}

Tunneling abstraction for 1-CFA

• Simulation takes a call-graph and produce a tunneling abstraction for CFA
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T’ = (I1 ∪ I2)∖I3
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• Simulation takes a call-graph and produce a tunneling abstraction for CFA



Technique 1: Simulation
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Need tunneling to simulate the given object sensitivity

• Simulation takes a call-graph and produce a tunneling abstraction for CFA



Technique 1: Simulation
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Tunneling should be avoided for improving precision

• Simulation takes a call-graph and produce a tunneling abstraction for CFA
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Intuition of Simulation

Technique 1: Simulation

Suppose the call-graph is produced from  
1-CFA + T’ and infer the T’

• Simulation takes a call-graph and produce a tunneling abstraction for CFA



• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

1objH+T (T = 1objH+T (T = )∅

id1
[D1]

id1
[D2]

id1
[D1]

main
[*]

id1
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

144

H+ ∅+T (T1objH+T (T = )∅bjH+T (T ∅objH+T (T ∅T (T ∅TobjH+T (T ∅T )+H+T (TobjH+T (T ∅T (T )T ∅objH+ ∅T (T ∅H+T (T ∅objH+T ∅objH+ )objH+T (T ∅1objH+T (T )H+T (T ∅objH+T ( ∅T (TobjH+T (TobjH+T (TbjH+ ∅bjH+T (T ∅T ∅bjH+TobjH+T (T+++jH+T (T1objH+T (T = ∅)∅= ∅)= ∅
1callH+T’ What is T’?

Intuition Behind Simulation (I1 ∪ I2)
• If tunneling is applied to i, two properties inevitably appear at i
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We track the two properties to find the T’



• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is
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Tunneling is applied

• Property 1: caller and callee methods have the same context

I1

Intuition Behind Simulation (I1 ∪ I2)
• If tunneling is applied to i, two properties inevitably appear at i
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Property of context tunneled call-sites 



• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is
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Tunneling is applied

• Property 1: caller and callee method have the same context

• Property 2: different caller contexts imply different callee contexts
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I1II
I2

Intuition Behind Simulation (I1 ∪ I2)
• If tunneling is applied to i, two properties inevitably appear at i
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Property of context tunneled invocations 



1objH+T (T = )∅
1callH+T’ What is T’?
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Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

59

• : caller and callee methods have the same contextI1



1objH+T (T = )∅
1callH+T’ What is T’?

• : caller and callee methods have the same contextI1

={3,5,6}I1

• : different caller ctx imply different callee ctxI2

={3}I2

Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is
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1objH+T (T = )∅
1callH+T’ What is T’?

• : caller and callee methods have the same contextI1

={3,5,6}I1

• : different caller ctx imply different callee ctxI2

={3}I2

I1 ∪ I2 = {3,5,6}

Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is
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T’ = 
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Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is
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1objH+T (T = )∅

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

id1
[12]

id1
[13]

main
[*]

id
[13]

foo
[14]

id
[14]

3

3

5,6

12

13

14

id
[12]

1callH+T’ (T’ = {3,5,6})

Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is
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1objH+T (T = )∅
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Necessity of I3

Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is
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1objH+T (T = )∅
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• : given object sensitivity produced only one contextI3

 = {5,6,12,13,14}I3

• : caller and callee methods have the same contextI1II
={3,5,6}I1II

• : different caller ctx imply different callee ctxI2II
={3}I2II

Intuition Behind Simulation (I3)
•  : Tunneling should be avoided for improving precisionI3
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• : given object sensitivity produced only one contextI3II
1objH+T (T = )∅
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 = {5,6,12,13,14}I3

• : caller and callee methods have the same contextI1II
={3,5,6}I1

• : different caller ctx imply different calle ctxI2II
={3}I2

(I1 ∪ I2)∖I3 = {3}T’=

Intuition Behind Simulation
• The inferred tunneling abstraction T’ is a singleton set {3}

66



1objH+T (T = )∅

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

1callH+T’ (T’ = {3})
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Simulation

Technique 1: Simulation
• With T’, CFA becomes more precise than the given object sensitivity
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Find an expensive but more precise CFA



• Obj2CFA consists of simulation and simulation-guided learning
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Our Technique : Obj2CFA

Obj2CFA

Limitation
Simulation is expensive!
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• Obj2CFA consists of simulation and simulation-guided learning
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Our Technique : Obj2CFA
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Scalability upper bound
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• Obj2CFA consists of simulation and simulation-guided learning
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Goal of learning:
Remove the overhead of simulation
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• Obj2CFA consists of simulation and simulation guided learning
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Our Technique : Obj2CFA

Obj2CFA

Given training programs and simulated tunneling abstractions, 
learning aims to find a model that produces similar tunneling 

abstractions without running the given object sensitivity 

72

Goal of learning:
Remove the overhead of simulation
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Goal of learning:
Remove overhead of simulation

Our Technique : Obj2CFA
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Given training programs and simulated tunneling abstractions, 
learning aims to find a model that produces similar tunneling 

abstraction without running the given object sensitivity 
The learned model will produce tunneling abstractions without 

running object sensitivity

Details in paper
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• Doop

Setting

• Pointer analysis framework for Java

Call-site sensitivity vs Object sensitivity

Context tunneling is included

• Research Question: which one is better?
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• Doop

• Pointer analysis framework for Java

•

Setting

• Pointer analysis framework for JavaNegative results on CFA have been repeatedly reported on Doop

2009
(OOPSLA)

2011
(POPL)

2013
(PLDI)

2014
(PLDI)

2016
(SAS)

2017
(OOPSLA)

…
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Setting

• Research Question: which one is better?

Call-site sensitivity vs Object sensitivity

Context tunneling is included

• Doop

• Pointer analysis framework for Java
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State-of-the-art 1-object 
sensitivity with tunneling 

2objH

• 1callH+SL (ours) is more precise and scalable than the existing object sensitivities
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Obj2CFA

Transformed 1-CFA with tunneling via Obj2CFA from 1objH+T

2objH
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3obj2H

1callH+SL is even more precise than 3obj2H

Precision upper bound of 
recent researches on object sensitivity

OOPLSA 2021 OOPLSA 2019
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Known as a troublesome benchmark 
in terms of scalability
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1callH+SL successfully analyzed jython
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• Necessity of learning
• 1callH+S is unable to analyze jython
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Summary

Thank you
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• Currently, CFA is known as a bad context

• However, if context tunneling is included, 
CFA is not a bad context anymore

• We need to reconsider CFA from now on
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• Currently, CFA is known as a bad context
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• However, if context tunneling is included, 
CFA is not a bad context anymore
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