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Be Superior to Object Sensitivity Even for
Object-Oriented Programs

Minseok Jeon and Hakjoo Oh
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Call-site Sensmwty VS Object Sensitivity

CaII-S|te sen5|t|V|ty was born in I98I
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Call-site Sensmwty VS Object Sensitivity

CaII-S|te SenSItIVIt)' was bOI‘n in |98| Where is it called from?
e Considers “Where”
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CaII-S|te Sensitivity vs Object Sensitivity

| - Object sen5|t|V|ty appeared in 2002
 Considers “What”
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CaII-S|te Sensitivity vs Object Sensitivity

| - Object sen5|t|V|ty appeared in 2002
* Considers “What"”

What is it called with?

~—— f Object is context

Object sensitivity
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Call-site Sensitivity vs Object Sensitivity

* An example shows the limitation of CFA and strength of object sensitivity

class C{
id(V){
return v;}
idl (v){

return this.id(v);}

J

main(){
cl = new C();//CI

c2 = new C();//C2
a = (A) cl.idl(new A());//query|
= (B) c2.idl(new B());//query2
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Call-site Sensitivity vs Object Sensitivity
* An example shows the limitation of CFA and strength of object sensitivity
decm —
0 id(vd r Identlty functlon 4
£ retu rn v, j L. 9
e B AE
. return this.id(v);} [*] [4]
) hWarTn A
main(){
cl = new C();//CI
c2 = new C();//C2
a = (A) cl.idl(new A());//query Call-graph of |-CFA
= (B) c2.idl(new B());//query2
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Call-site Sensitivity vs Object Sensitivity

* An example shows the limitation of CFA and strength of object sensitivity

class C R
id(v){{ jAlso an identity function implemented with id

retu ' V,g

3 T i  —
L4 return this.id(v); } [*]
main(){

cl = new C();//CI

c2 = new C();//C2
a = (A) cl.idl(new A());//query Call-graph of 1-CFA
= (B) c2.idl(new B());//query2
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Call-site Sensitivity vs Object Sensitivity

| Method & Context |
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Call-site Sensitivity vs Object Sensitivity

* An example shows the limitation of CFA

| Limitation of CFA : |
Nested method calls | \:‘

(9. a=(A) cl.idl (new A())://query| | Call-graph of |-CFA
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Call-site Sensitivity vs Object Sensitivity

* An example shows strength of object sensitivity
0: class C{ dI
I id(v i
2.  returnv;} / [CI] _’ [CI]
= idl) “
. return this.id(v);} X
D - \n_.
7. ¢l = new C();//C| [CZ] [CZ]
8: c2 = new C();//C2
9: a=(A) cl.idl(new A());//query]| Call-graph of I'Obl
IO = (B) c2.idl(new B());//query2

—
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Call-site Sensitivity vs Object Sensitivity

* An example shows strength of object sen5|t|V|ty ,

* |d |
) [C ] -
A “ /
return t |s |d(v) }
} \ “ -

iIc2 = new C() //C2
: = (A) cl.idl(new A()); //queryl Ca”'graph of | Obl
= (B) c2.id | (new B()); //queryZ
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Call-site Sensitivity vs Object Sensitivity

* An example shows the limitation of object sensitivity and strength of CFA

. class C{
id(VI{

return v;}

: main(){ [*] [CI]

cl = new C();//CI

a = (A) cl.id(new A());//query Call-graph of | -Ob]
b = (B) cl.id(new B());//query2

c = (B) cl.id(new C());//query3
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Call-site Sensitivity vs Object Sensitivity

* An example shows the| I|m|tat|on of object sen5|t|V|ty

cl =

a = (A ] .id(new A());//query| Ca”_graph of | -Obj
=(B)] cI .id(new B());//query2

c = (B)i cI |d(new C()) //query3

main | 67,8
new C();//ClI

The three method caIIs share the same receiver object CI

, 15_ o



Call-site Sensitivity vs Object Sensitivity

+ An example shows the e

6 2= (A) cTid(now AQYTaueryT) N
17 b= (B)cl |d(new B()); //queryZ
8 ¢ = (C) cl.id(new C()) //query3

Call-graph of |-CFA

Call-site sensitivity easily separates the three method calls



Call-site Sensitivity vs Object Sensitivity

e Call-site Sensitivity and Object Sensitivity had been actively compared

Parameterized Object Sensitivity for Points-to
Analysis for Java

ANA MILANOVA

Rensselaer Polytechnic Institute
ATANAS ROUNTEV

Ohio State University

and

BARBARA G. RYDER

Rutgers University

The goal of points-to analysis for Java is to determine the set of objects pointed to by a reforence
variable or & reference object field. We present object sensitivity, i new form of context sensitivity
fior flow-i points-t rJava, The key idea of our approach is to analyze a method
separately for each of the object names that represent run-time objects on which this method may
be invoked. To ensure flexibility and practicality, we propose a parameterization framework that
allows analysis designers to control the tradeofTs between cost and precision in the ohject-sensitive
analyris,

Side-effect analysis determines the memory locations that may be modified by the execution of a
program statement. Def-use analysis identifies pairs of statements that set the value of o memory
location and subsequently use that value, The information computed by such nnalyses has a wide
variety of uses in compilers and software tools. This work proposes new versions of these analyses
that are based on object-sensitive pomts -to analysis,

We have impl d two i i of our par ] object-sensitive points-to analy-
six. On a set of 28 Java programs, our experiments show that these analyses have comparable cost
to a context-i ints-t for Java which iz based on Andersen's analysia for C. ﬂur
results also show that object "y ignificantly imp the precision of side-effect
and eall graph construction, pared to (1) context-i iti al and (2) context- smns:l.l\'t
points-to analysia that models context using the invoking call site. These experiments demonstrate
that object-sensitive analyres can achieve T T . while at the same
time remaining efficient and practical.
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Context-sensitive points-to analysis: is it worth it?*

Ondfej Lhotik'* and Laurie Hendren®
olhotakfuwaterloo.ca hendrenfsable.mcgill.ca

! School of Computer Science, University of Waterloo, Waterloo, ON, Canada
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Abstract. We present the results of an empirical study evaluating the precision
of subzet-| h:lsed points-to analysis with several variations of context sensitivity on
Juva benct of signi size. We pare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-based context-sensitive algo-
rithm proposed by Zhu and Calman, and by Whaley and Lam. Our study includes

lyses that context ly spcclahz.e only pointer variables, as well as ones
that also specialize the heap ab We both ch istics of the
points-to sets themselves, as well as effects on the precision of client analyses. To
guide development of efficient analysis implementations, we measure the number
of contexts, the number of distinet contexts, :md ttu. number oFdlsnn:l pomls 10
sets that arise with each context itivi To we
measure the size of the call graph in tetms of methods and edges, me number of
devirtualizable call sites, and the number of casts statically provable to be '.u&
The results of our study indicate that object analysis impl are
likely to seale better and more predictably than the other approaches; that object-
sensitive analyses are more precise than comparable variations of the other ap-
I hes; that specializing the heap al ion i more than ex-
tending the length ol'comex: strings; and that the prol'usn)n of cycles in Java call
graphs severely reduces precision of analyses that forsake context sensitivity in
cyclic regions.

1 Introduction

Does context sensitivity significantly improve precision of interprocedural analysis of
object-oriented programs? It is often suggested that it could, but lack of scalable imple-
mentations has hindered thorough empirical verification of this intuition.

Of the many context sensitive points-to analyses that have been proposed (e.g. [1,4,
8,11,17-19,25,28-31]), which improve precision the most? Which are most effective for
specific client analyses, and for specific code patterns? For which variations are we likely
to find scalable impl ions? Before d g resources to finding efficient imple-
mentations of specific analyses, we should have empirical answers to these questions.

This study aims to provide these answers. Recent advances in the use of Binary De-
cision Diagrams (BDDs) in program analysis [3, 12,29, 31] have made context sensitive
analysis efficient enough to perform an empirical study on benchmarks of significant size.
Using the JEDD system [14], we have implemented three different families of context-
sensitive points-to analysis, and we have measured their precision in terms of several
client analyses. Specifically, we compared the use of call-site strings as the context ab-
straction, object sensitivity [17, 18], and the algorithm proposed by Zhu and Calman [31]

* This work was supported, in part, by NSERC and an IBM Ph.D. Fellowship.

Evaluating the Benefits of Context-Sensitive
Points-to Analysis Using a BDD-Based
Implementation

ONDREJ LHOTAK
University of Waterloo
and

LAURIE HENDREN
McGill University

‘We present PApDLE, a framework of BDD-based context-sensitive points-to and call graph analyses
for Java, as well as client analyses that use their results. PADDLE supports several variations of
context-sensitive analyses, including call site strings and object sensitivity, and context-sensitively
specializes both pointer variables and the heap abstraction. We empirically evaluate the preci-
sion of these context-sensitive analyses on significant Java programs. We find that that object-
sensitive analyses are more precise than comparable variations of the other approaches, and that
specializing the heap abstraction improves precision more than extending the length of context
strings.
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Strictly Declarative Specification of Sophisticated Points-to Analyses
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Abstract

We present the Door framework for points-to analysis of
Java programs. Door builds on the idea of specifying pointer
analysis algerithms declaratively, using Datalog: a logic-
based language for defining (recursive) relations. We carry
the declarative approach further than past work by describ-
ing the full end-to-end analysis in Datalog and optimizing
nggressively using a novel technique specifically 1argeting
highly recursive Datalog programs,
As a result, Door achieves several benefits, including full
rder-of- de tmp in runtime. We compare
Door with Lhotik and Hendren's Pannig, which defines the
state of the art for context-sensitive analyses. For the exact
same logical points-te definitions {and, ly, rdenti-
cal precision) Door is more than 15x faster than Pavove for
a l-call-sitc sensitive analysis of the DaCapo benchmarks,

yannis@es umass.edu

analyses. It is, thus, not surprising that a wealth of research
has been devoted to efficient and precise pointer analysis
techniques, Confexi-sensitive analyses are the most common
class of precise points-io analyses, Context sensitive analysis
approaches qualify the analysis facts with n contexs abstrac-
tion, which captures a static notion of the dynamic context
of a method. Typical contexts include abstractions of method
call-sites (for a call-site itive analysis—ithe traditional
meaning of “context-sensitive™) or receiver ebjects (for an
object-sensitive analysis).

In this work we present Door: a general and versatile
points-to analysis framework that makes feasible the most
precise context-sensitive analyses reporied m the literature
Door implemenis a mange of algonthms, including context
insengitive, call-gite sensitive, and object-sensitive analyses,
all specified modularly as variations on a common code base
(& to the prior siate of the ari, Door often achieves

with bower bul still substantial dups for other i
analyses. Additionally, Door scales to very precise analyses
that are impossible with Paoove and Whaley et al."s bddbddb,
directly add open probl in past Finally,
our implementation is modular and can be easily configured
to analyses with a wide range of characteristics, largely due
to its declarativeness.

Categories and Subfect Descriptors F.3.2 [Lumn u.ud

peedups of an order-of-magni for several important
analyscs.
The main elements of our approach are the use of the Dat-

alog language for specifying the program analyses, and the

aggressive optimization of the Datalog program. The use of

Datalog for program analysis (both low-level [13,23,29] and
high-level [6,9]) is far from new. Our novel optimization ap-
pmach however, accounts for several orders of magnitude of

Meanings of Programs]: Semantics of Py
Languages—Program  Analysis; D16 [Programming
Technigques|: Logic Programming

General Terms Algorith L

e

c T analyses typically
nm over 10K llml:‘l mare slowly, Generally our optimiza-
tiona fit well the appmnch of hnndlmg program facts as 8

1. Introduction

Foints-to (or pointer) analysis intends to answer the question
“what objects can a program variable point to™ This ques-
tion forms the basis for practically all higher-level program

Femsiscion 10 make dig bard coples of all o past of this work for paronal or
[ — il fre aravided that copies are Aol made or dadnbuied
K profi o¢ o ¢ 5nd it copies heat this natice and the fll ehasion
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s s, required price apecific pemaisac sadior & foe
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datab by 11 ng the indexing sr.hcmc and
the ineremental evaluati u{D.lld'Iug 1 Fur-
thermaore, our approach is entircly Datalog based, encoding
declaratively the legic required both for call graph construe-
tion as well as for handling the full semantic complexity
of the Java | {e.g., static 1
reference nh]nctq threads, exceptions, reflection, ete.). Ilm
makes our pointer analysis specifications clegant, modular,
but also cfficicnt and casy to tune. Generally, our work is a
strong data point in support of declarative languages: we ar-
3u: that prrﬂa!hlmcly much human effort is n:qu!md for im-
and optimizing complex mutually-rec oo def-
initions a1 an operational level of abstraction. On the other
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Call-site Sensitivity vs Object Sensitivity

e Object Sensitivity outperformed call-site sensitivity

Parameterized Object Sensitivity for Points-to
Analysis for Java

ANA MILANOVA

Rensselaer Polytechnic Institute
ATANAS ROUNTEV

Ohio State University

and

BARBARA G. RYDER

Rutgers University

The goal of points-to analysis for Java is to determine the set of objects pointed to by a reforence
variable or & reference object field. We present object sensitivity, i new form of context sensitivity
for flow-i itive pointa-t lysia for Java, The key idea of our approach is to analyze a method
separately for each of the object names that represent run-time objects on which this method may
be invoked. To ensure flexibility and practicality, we propose a parameterization framework that
allows analysis designers to control the tradeofTs between cost and precision in the object-sensitive
analyris,

Side-effect analysis determines the memory locations that may be modified by the execution of a
program statement. Def-use analysis identifies pairs of statements that set the value of o memory
location and subsequently use that value, The information computed by such nnalyses has a wide
variety of uses in compilers and software tools. This work proposes new versions of these analyses
that are based on object-sensitive points-to analysis,

We have impl d two i intions of our par ized object itive points-to analy-
six. On a set of 28 Java programs, our experiments show that these analyses have comparable cost
to a context-i points-t for Java which iz based on Andsrmnnnmﬂymn for C. ﬂur
results also show that object iti "y ignificantly imp the precision of &i flect
and eall graph construction, pared to (1) context-i iti alysi and (2) context-sensitive
points-to analysia that models context using the invoking call site. These experiments demonstrate
that object-sensitive analyres can achieve aut P T . while at the same
time remaining efficient and practical.

A preliminary version of this article appeared in Proceedings of the International Symposium on
Saoftware Testing and Analysis (July), 2002, pp. 1-11.
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Abstract. We present the results of an empirical study evaluating the precision
of subzet-based points-to analysis with several vaniations of context sensitivity on
Juva benchmarks of signi size. We pare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-based context-sensitive algo-
rithm proposed by Zhu and Calman, and by Whaley and Lam. Our study includes

lyses that context itively specialize only pointer variables, as well as ones
that also specialize the heap ab ion. We both ch istics of the
points-to sets themselves, as well as effects on the precision of client analyses. To
guide development of efficient analysis implementations, we measure the number
of contexts, the number of distinet contexts, :md tlu. number ordlsnn:l pmms 10
sets that arise with each context itivi To we
measure the size of the call graph in terms of methods and edges, me number of
devirtualizable call sites, and the number of casts statically provable to be '.u&
The results of our study indicate that object itive analysis impl are
likely to seale better and more predictably than the other approaches; that object-
sensitive analyses are more precise than :ompmb]e variations of the other ap-
I hes; that specializing the heap al more than ex-
tending the length ol'comex: strings; and that the pml’usmn of cycles in Java call
graphs severely reduces precision of analyses that forsake context sensitivity in
cyclic regions.

1 Introduction

Does context sensitivity significantly improve precision of interprocedural analysis of
object-oriented programs? It is often suggested that it could, but lack of scalable imple-
mentations has hindered thorough empirical verification of this intuition.

Of the many context sensitive points-to analyses that have been proposed (e.g. [1,4,
8,11,17-19,25,28-31]), which improve precision the most? Which are most effective for
speaﬁc client analyses, and Ior specific code patterns? For which variations are we likely
to find scalable impl 7 Before devoting resources to finding efficient imple-
mentations of specific analyses, we should have empirical answers to these questions.

This study aims to provide these answers. Recent advances in the use of Binary De-
cision Diagrams (BDDs) in program :mulyc]f. [3,12,29,31] have made context sensitive

Evaluating the Benefits of Context-Sensitive
Points-to Analysis Using a BDD-Based
Implementation
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McGill University

‘We present PApDLE, a framework of BDD-based context-sensitive points-to and call graph analyses
for Java, as well as client analyses that use their results. PADDLE supports several variations of
context-sensitive analyses, including call site strings and object sensitivity, and context-sensitively
specializes both peinter variables and the heap abstraction. We empirically evaluate the preci-
sion of these context-sensitive analyses on significant Java programs. We find that that object-
sensitive analyses are more precise than comparable variations of the other approaches, and that
specializing the heap abstraction improves precision more than extending the length of context
strings.
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Strictly Declarative Specification of Sophisticated Points-to Analyses
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Abstract analyses. It is, thus, not surprising that a wealth of research
We present the Door framework for points-to analysis of has been devoted 1o efficient and precise pointer analysis
Java programs. Door builds on the idea of specifying pointer techniques, Confexi-sensitive analyses are the most common
analysis algorithms declaratively, using Datalog: a logic- class of precise points-to mnalyses. Contaxt nensitive analyris
based language for defining (recursive) relations. We carry spproaches qualify the analysis facts with a contert sbstrac-
the declarative approach further than past work by describ- tion, which captures a static notion of the dynamic context
ing the full end-to-end analysis in Datalog and optimizing ofamethod. Typical boneE clude abstractions of methed
nggressively using a novel technique specifically 1argeting t““"’_lm' (for a call-site o ‘“' w"’_‘“ m’_"' traditional
highly recursive Datalog programs, meaning of “context-sensitive™) or receiver ebjects (for an
As a result, Door achieves several benefits, including full object-sensitive analysis). )
rder-of- £ in runtime. We compare In this work we present Door: a general and versatile
Door with Lhotdk and ]-I:ndltn ‘s Pannis, which defines the points-to analysis framework that makes feasible the most
state of the art for context-sensitive analyses, For the exact precise conlexi-sensitive """1_3‘5“ reported i the literature
same logical points-to definitions (and, ly, identi- Door implemenis a mange of algonthms, including context
cal precision) Door is more thin 15x faster than Pavowe for insensitive, call-gite sensitive, and ahjccl-acngili\'\: analyses,
a I-call-site sensitive analysis of the DaCapo benchmarks, alll specificd modularly as VArations on & common code hase
with lower but still substantinl lups for other i Comp to the prior siate of the ari, Door often achieves
i d 4 i B
analyses. Additionally, Door scales to very pn analyses F pe of an f-mag) for several impaortant
that are impossible with Papoie and Whaley et al."s bddbddb, analyses. .
directly open in past Finally, The main elements of our approach are the use of the Daat-
our lmp[rmcmannvn is modular and ean be casily configured alog language for specifying the program analyscs, and the

to analyses with a wide range of characteristics, largely due sggressive optimization of the Datalog program. The use of
Datalog for program analysis (both low-level [13,23,29] and
high-level [6,9]) is far from new. Our novel optimization ap-
proach, however, accounts for several orders of magnitude of

c T analyses typically
ﬂl!\ over 10K llml:‘l mare slowly, Generally our optimiza-
tiona fit well the appmch of hnndlmg program facts as 8
datab by 11 ng the indexing sr.hcmc and
; the ineremental evaluati u{D.lld'Iug 1 Fur-
1. Introduction thermore, our approach is entirely Datalog based, encoding
Foints-to (or pointer) analysis intends to answer the question declaratively the logic required both for call graph construc-
“what objects can o program variable point to™" This ques- tion as well as for handling the full semantic complexity

tion forms the basis for practically all higher-level program of the Java I (e.g., static
reference ohj threads, exceptions, reflection, ete.). This

to its declarativeness.,

Categories and Subfect Descriptors F.3.2 [Lumn u.ud
Meanings of Programs]: Semantics of Py
Languages—Program  Analysis; D.1.6  [Programming
Techniques|: Logic Plogrammmg
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* Lectures have taught the superiority of object sensitivity
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Call-site Sensitivity vs Object Sensitivity

e Researches focused on improving Object Sensitivity
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Abstract

Context-sensitive points-1o analysis is valud
precision with good performance. The stang
are call-site-sensitivity (KCFA)
Co ning both flavors of context-sensitiy
but at an infeasibly high cost. We show

nation of call-site- and object-sensitivity f
ysis is highly profitable. Namely, by keepi
only when analyzing selected langunge fief

y has
for points-to analysis in object-|
tical success, however, object-
mstance, for a context depth
D mentations deviate significantl]
object-sensitive analysis. The
degrees of freedom, relating 1of
4 ot every method call and objed
\ 9 for the analysis design space, af
derstanding of object-sensitivil
sensitive analyses. The resulty
J find that pust implementations
‘ contexts, lo the severe detrimen
N define a “full-ohject-sensitive”™
< higher precision, and often pef
text depth. We also i dl

PP the precision of an analysis
at all times, In terms of speed, the selecti
Kinds of context not only vastly owlperfom)
nations but is also faster than a mere object|
result holds for a large array of analyses i)
2 obiect_sensitive with & cont itive H

g u new set of

Categories and Subfect Descripiors  F3.)
of Programs): Semantics of Programming)
Analysis: D34 [Programming Lang
Compilers

Cieneral Terms  Algorithms, Languages, H
Keywords points-to  analysis;  contey]

proximation of object-sensitivij
ity at substantially reduced cosi
makes an unconventional use o
are not dynamic types of ohje
A stead upper bounds on the dyn:
| Chur results expese the influen|
-« of points-to analysis and demo
) with major impact: It decisivel
b a spectrum of analyses that si
times faster than an anal

Y Ype

1. Introduction

Points-lo analysiz is a static program analys
puting all objects {typically identified by ull)
gram varigble may point to. The area of
its close relative, alias anaiysis) has been
search and is ameng the most standardized
inter-procedural analyses, The emphasis of

o/ ity {comparable to analyses wit]
precision (comparable to the by
same eontext depth).

Caregories and Subject Descrd
{ af Programs|: Semantics of H
Analysis

; DI [Programming L
Theory—Semantics

b General Terms  Algorithms,
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rithms is on combining fairly precise mode!
with scalability. The challenge is to pick juf
that will allow satisfactory precision at a o
more, although increasing precision often

totic complexity, this worst-case behavior ||
actual practice, Instead. technigques that are

good precision often also exhibit better ave
since smaller points-to sets lead to less worl
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Making k-Object-Sensitive Pointer Analysis
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More Precise with Still k-Limiting

Tian Tan!, Yy
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? Advanced Innovation Cer

Abstract. Object-sensitivity|
abstraction for pointer analys|
k-object-sensitive pointer ana)
sites (as k context elements)

call, may end up using some
ducing a finer partition of the
method call. In this paper, W
improving the precision of any|
by still using a k-limiting con
allocation sites that are red
Object Allocation Graph (O
(e.g., a context-insensitive Ar
program and then avoid themn
ysis for the program. BEAN i
precision that is guaranteed t
have implemented BEAN as al
two state-of-the-art whole-pr

representative clients (may-al

nine large Java programs fror
succeeded in making both ana

under each client at only smal

1 Introduction

Pointer analysis, as an enabling t
client applications, including bug
compiler optimisation [6,33], and
mensions of pointer analysis precis
For C/C++ programs, flow-sensit]
For object-oriented programs, e.g|
is known to deliver trackable and
There are two general approac
oriented programs, call-site-sensit]
24,20] (among others). A k-CFA a
call by using a sequence of k call}
site). In contrast, a k-object-sensif
k labels with each denoting a new
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Abstract

Mainstream points-1o analysis techniques fc
languages rely predominantly on the alloca
tion 1o model heap objects. We present My
heap abstraction that is specifically devel
the needs of an important ¢lass of type-dd
such as call graph construction, devirtuali
fail casting. By merging equivalent autorm)
type-consistent objects that are created b
site abstraction, MAHIONG enables an allod
points-to analysis to run significantly fast

nearly the same precision for type-depend

Precision-Guided ConteX

YUE LI, Aarhus University, Denmark
TIAN TAN, Aarhus University, Denmark
ANDERS M@LLER, Aarhus University,

Scalability-First H

YANNIS SMARAGDAKIS, University

Context sensitivity is an essential technique
observed that applying context sensitivity p|
balance between analysis precision and sp
do not provide much insight into what chal
principled approach for identifying precisiol
explain where most of the imprecision arises
an efficient algorithm to recognize these fl
tradeoffs between analysis precision and sp
Our experimental results on standard ben

MAHIONG is simple conceptually, effi
easily on any allocation-site-based points.
demonstrate its effectivencss by discussing
why it is a better aliernative of the allocation]
for type-dependent clients and evaluating
12 large real-world Java programs with five
puinis-to analyses and three widely used|
clients. MAHIONG is expected to provide s
for many program analyses where call grap
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points-to analysis, heap gbstra

1. Introduction

applies sensitivity partially, only on
(98.8%) of the precision of a highly-precise ¢
with a context-sensitive heap), with a substd
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1 INTRODUCTION

Pointer analysis is a fundamental famil

Pointer Analyses should be designed 0
in cost and precision for specific groups
lems, We do not need a different pointe
client problem, but rather we should loo
client problems with similar needs.
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pointer variables in a program. Such i
inter-procedural control flow in object-o|
engineering tools, e.g., for bug detecti
analysis [Arzt et al. 2014; Grech and Sn
tion [Fink et al. 2008; Pradel et al. 2012],
Sridharan et al. 2007].

For decades, numerous analysis tech
precise and more efficient, especially fo
Balatsouras 2015; Sridharan et al. 2017
precision is context sensitivity [Milano
Smaragdakis et al. 2011], which allows eg)
to separate the static abstractions of diff§

Self-Tuning C
Yue Li Tian Tan
Aarhus University Aarhus University
=li audk tiantani@cs. andk
ABSTRACT

Context-sensitivity is important in polnter analysis to ensure high
precision, but existing techniques suffer from unpredictable scalal
bility, Many variants of context-sensitivity exist, and it is difficul
to choose one that leads to reasonable analtysis time and obtaindg
high precision, without running the analysis multiple times,

We present the Scaven framework that addresses this problem
Scavun efficiently estimates the amount of points-to informatior
that would be needed b lyze each method with diffe variantd
of context-sensitivity. It then selects an appropriate variant fo
each method so that the total amount of points-to information i
bounded, while utilizing the available space to i

Data-Driven Context-Sen

SEHUN JEONG, Korea University, Repyl
MINSEQK JEON', Karea University, Re
SUNGDEOK CHA, Korea University, R
HAKJOO OHT, Korea University, Repub

We present a new data-driven approach to ag
for Java, While context-sensitivity has greats
other precision-improving techniques, it is dig
most from context-sensitivity and decide ho
designing such rules is a nontrivial and labo:
overcome these challenges, we propose an aut
o itivity from codet In our apy]
heuristic rules, in disjunctive form of propertiel
context-sensitivity. We present a greedy algo
We implemented our approach in the Doop ff

Our experimental results demonstrate that Scaces achicves pre]
dictable scalability for all the eval d prog; {e.g.. speedup
. oy

F
can reach 10x for 2-objec ity), while p g &
that matches or even exceeds that of the best alternative technigue
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1 INTRODUCTION

Painter analysis is a family of static analysis techniques that provid

a foundation for many other analyses and software engineering
tasks, such as program shicing [36, 39], reflection analysis [19, 31

bug detection [13, 26], security analysis [1, 23], program verifica)
tion [# . and program debugging and comprehension [5, 21

The goal of painter analysis is to statically compute a set of objects
(abstracted as their allocation sites) that a program variable ma

point to during run time. Although stating this goal is simple, it if
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1 INTRODUCTION

Points-to analysis is one of the most imgj
memory locations that a pointer variable
for many program verification tasks (e.g.,
of subsequent higher-level program analy
program understanding tools.

For object-oriented languages, context
guish method’s local variables and obje
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Learning Graph-based Heuristid
without Handcrafting Applicatic

MINSEOK JEON, MYUNGHO LEE, and HAK){

We present GRAPHICK, a new technique for automatically

Striking a balance between precision and scalability of
heuristics. For example, because applying context sens|
impractical, pointer analysis typically uses a heuristic to ¢
Past research has shown that exploiting the program’s

cost-effective analysis heuristics, promoting the recent tj
graph representations of programs obtained from a pre-aj
such heuristics remains challenging, requiring a great des
aim to reduce this burden by learning graph-based heurist
application-specific features. To do so, we present a feal
algorithm for learning analysis heuristics within the langu
used it to learn graph-based heuristics for chject sensity
show that our approach is general and can generate high
heuristics are as competitive as the existing state-of-the-aj
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1 INTRODUCTION

Pointer analysis is a fundamental program analysi
various software engineering tools. The goal of poi
estimate heap objects that pointer variables may r
essential for virtually all kinds of program analys
et al. 2015; Livshits and Lam 2003; Naik et al. 2006,
et al. 2014; Avots et al. 2005; Grech and Smaragd
program verifiers [Fink et al. 2008], symbolic exeg
repair tools [Gao et al. 2015; Hong et al. 2020; Le|
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Object-sensitivity is widely used as a ¢
sensitively for object-oriented languagd
programs, k-object-sensitive pointer aj
values of k, where k € 2 typically. A fq
k-obj to analyze only some methods in
analysis. While already effective, these h
consequently, are limited in the efficiend
that makes k-obj run significantly fastd
EAGLE is to enable k-obj to analyze a mg
some of its selected variables/allocation
by reasoning about context-free-langual
based on a new CFL-reachability form|
comparing it with the prior art in terms
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1 INTRODUCTION

For object-oriented languages such
precision for pointer analysis [Lhe
insensitive pointer analysis, such as
once, producing one points-to set f}
allocation site in the method. In ¢
multiple times under different call{
thereby producing multiple points-
abstract objects for modeling every

To tame the combinatorial explo
sequence of k context elements, un|
object-oriented programs: (1) k-calls
of a method by its k-most-recent cal

U
Making Pointer Analysis More Precise by Unleashing the 4
Power of Selective Context Sensitivity €

’

TIAN TAN, Nanjing University, China
YUE LI°, Nanjing University, China [ *4
XIAOXING MA, Nanjing University, China ‘
CHANG XU, Nanjing University, China

YANNIS SMARAGDAKIS, University of Athens, Greece

Traditional context-sensitive pointer analysis is hard to scale for large and complex Java programs. To address
this issue, a series of selective context-sensitivity approaches have been proposed and exhibit promising results. .
In this work, we move one step further towards producing highly-precise pointer analyses for hard-to-analyze ‘ ‘ ‘ .
Java programs by presenting the Uni ty-Relay framework, which takes selective context sensitivity to the next
level. Briefly, Uni ty-Relay is a one-two punch: given a set of different selective context-sensitivity approaches, g
say § = §y,...,5,, Unity-Relay first provides a mechanism (called Unity) to combine and maximize the
precision of all components of 5. When Uni ty fails to scale, Unity-Relay offers a scheme (called Relay) to
pass and accumulate the precision from one approach S; in S to the next, S;;;, leading to an analysis that is
more precise than all approaches in §.

As a proof-of-concept, we instantiate Unity-Relay into a tool called BaTon and extensively evaluate it on &€
a set of hard-to-analyze Java programs, using general precision metrics and popular clients. Compared with 0
the state of the art, BaTon achieves the best precision for all metrics and clients for all evaluated programs. ‘
The difference in precision is often dramatic—up to 71% of alias pairs reported by previously-best algorithms [ 4
are found to be spurious and eliminated.
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1 INTRODUCTION A
Pointer analysis is important for an array of real-world applications such as bug detection [Chandra 0
et al. 2009; Naik et al. 2006], security analysis [Arzt et al. 2014; Livshits and Lam 2005], program
verification [Fink et al. 2008; Pradel et al. 2012] and program understanding [Li et al. 2016; Sridharan
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A Machine-Learning Algorithm with Disjunctive M
Data-Driven Program Analysis

MINSEOK JEON, SEHUN JEONG', SUNGDEOK CHA, and HAKJOO OH',
Republic of Korea

We present a new machine] g lgorithm with di model for data-driven p
One major challenge in static program analysis is a substantial amount of manual effort regf
the analysis performance. Recently, data-driven program analysis has emerged to addre:
by automatically adjusting the analysis based on data through a learning algorithm. Al
approach has proven promising for various program analysis tasks, its effectiveness has

o simple-minded learning models and algorithms that are unable to capture sophisticaty
disjunctive, program propertics. To overcome this shortcoming, this article presents a new d]

far data-driven program anabysis as well as a learning algarithm to find the model parameters|
boabean formulas over atomic features and therefore is able to express nonlinear combinat)
properties. Key technical challenge is efficiently determine a set of good boolean formuld
search would simply be impractical. We present a stepwise and greedy algorithm that ¢
boolean formulas. We show the eff and lity of our al, hm with two
context-sensitive points-to analysis for jnv:. and flow-sensitive interval analysis for C. Expd
show that our technique improves the of the state-of-tH
including ones hand-crafted by human experts.
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1 INTRODUCTION

One major challenge in static program analysis is a suhst:mtml amount of manual
for tuning the analysis p e for real id Practical static anal
variety of heuristics to optimize their pﬂ'formnnu‘ [ur example, context-sensitiv
for analyzing object-oriented programs, as it distinguishes method's local variables
different calling-contexts. However, applying context-sensitivity to all methods §

does not scale and therefore real Id static ¥ apply context ity on}
methods d d by some h rules [Smaragdakis et al. 2014]. Anothe]
relational analysis such as ones with Octagons [Miné 2006]. Because it is impracticy

of all variable relationships in the program, static analyzers employ variable-clust

“The first and second sathors contributed equally to this work

Making k-Object-Sensitive Pointer Ana|
More Precise with Still k-Limiting

Than Tan', Yue Li', and Jingling Xue

! School of Computer Science and Enginecring, UNSW Austral
? Advanced Innovation Center for lmaging Technology, C

Abstract. Object-sensitivity is regarded ns arguably the best co
abstraction for pointer analysis in object-ortented languages. Howe:
k-object-sensitive pointer analysis, which uses a sequence of k allos
sitos (as k context elements) to represent a calling context of 4 me
call, may end up using some context elements redundantly witho
ehucing n finer partition of the space of (concrete) calling contexts fo
method call, In this paper, we introduce BEAN, & general apprond
improving the precision of any k-object-sensitive annlysis, denoted &
by still using a k-limiting context abstraction. The novelty s to ide
allocation sites that are redundant context elements in k-obj fro
Object Allocation Graph (OAG), which is bullt based on a pre-an;
(e, & context-insensitive Andersen's analysis) performed initinlly|
program and then avoid them in the subsequent k-object-sensitive
vuis for the program. BEAN is generally more precise than k-obj, w
prees Is guaranteed to be as good as k-obj in the worst casd
have implemented BEAN as an open-source tool and applied it 1o

two state-of-the-art whole-program pointer analyses in Doop. Fo
reprosentative clients {may-alias and may-foil-cast) evalunted on a 4
: Inrge Java progrums from the DaCapo benchmark suite, BEAY
succeoded in making both analyses maore procise for all these benchn]
under each client at only small increases In analysis cost

o th

1 Introduction

Pointer analysis, as an enabling technology, plays a key role in a wi
client applications, including bug detection [3, 25, 35, 34|, security anal
compiler optimisation [6,33), and program understanding [12]. Tw
menstons of pointer analysis precision are flow-sensitivity and context
/G- programs, flow-sensitivity is heeded by many clieats 1
however, context
s known to deliver trackable and useful precision [17, 19-21, 28-30],
There are two gmcrn.l approaches to ﬂc‘h]c"\mg context-sensitivity,

Jnthu teascisitlin aatrule dens & nh,«-: allc
k labels with each denoting a new statement) as context clements,
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ABSTRACT

Context-sertivily s importast i polnter analysis to cnsuse high
precision, but existing techniques suffer from usgiredictable scal-
bility. Many variants of context-sentivity exist, and it i alt
e that leads

, without run
We prresent the Scarn framework that sddresses this problem
Scaven r1|l\|r||!|‘f flLIlIuIe the amount of points-to information
tha ar
of contet-sensitvity. 6 then sebects an appropriate variant for
ench method 30 that the total st sformaticn i
bounded, while ..u_m:\gulw vailable space to maximize peecision.

Our that Scaten ach

dictable sealabilty for all the evaluated program (e . speedups
«can reach 19x for 2-object-senitivity). while providing & precision
that matches or even exceeds that of the best altemative techniques.

o reasonable a
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1 INTRODUCTION
Pointer anabysis is a family of

analysis techniqoes that provide
 fonmdation ot ary cther analyses and wflware enginecring
tsks, sach as program sl
bug detection |13, 26], security 1 g
than | and program debugging and <nm|-rr]k—nm|| [s
The goal of polmisr arslysis i to statically comsple & set of oljects.
(abwtracted as theis allocat 4] that & program vasi

[point to during ren time. Although staténg this goal is
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Abstract 1. Introduction

vity has emergod as an excellent context absiraction
analysis in object-oriented lasguages. Despite its prac-
tical success, however, object-sensitivity is pooely undensiood. For

Priner-tor analyshs {or polnier anals
unda

mentations. dev
ohjcct-sensitive anal ey
degrees af fropdoe, relssing to which comext clements are picked
at every method call and object crestion. W oifer a cless model
0 space, nd discuss & Formal and informal un-

analysis is b pick judicioss ap

er and

cision, and often performance, for the exact 4smne con-
We alio imtrodece Type-se ] '

p o of object-sensitivity thal preserves high context qual
ity at wubstant; reduced cost. A
maken
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Abstract

Conteal-scamiive points-40 analysis is valuable for achieving kigh
peeciion wi good performance. The Havers of context
sensitivity are call-se-sensitivity (RCPA} and objevt-sensitivity,
Combiming beth flavors 0f context-sensilivity increases percisson
but st an isfrasibly high cost. We whow that 3 selective comibi-
ralion of callsile. and object-sensitivity for Java points-to anal
s in highly proftable. Namely, by keeping a combined context
oaly when salyring selected language features, we can closely
approsimats the peecision of an amalysis that keeps both comexts
at all times. In terms of speed, the selective combination of both
kinds of contiat st cely vausly cetperforem pon-seledive combi-
eaaticnns bt i 4l St thuan 5 e ebject-sesitive analysis This
resailt holds for & large areay of amalyses e, 1-object-scasitive,
Z-obje will heap. ty

abdishing 3 new set af performance/ peecision SWee spocs

F3.2 |Logicy and Meanings

y o how d.r:m1.| anal
Ieernct with vaslous Language features. Fo
nal lisguages, coslestsensitivily is

and usefully high precision. Com

objecs

Subject
..,f [ mgmm-l Semastics of Programesing Lanpeages—Program
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et Muin
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vented langusg
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Theory — Semant

est way 1o describe the concept
Better-known eall-aite ses
sés uses method call-shes (ie
the method]

sepasales infir
per call-stack .., seq
that Red 1o the current method esll §
= e 0 hoap objects per call-su
that fed |uw-ob|r. s all

Gemeral Terma  Algorithms, Langusges. Perfommance

allocation, For instance, in e
below, & 1-call-site sensitive snalyss (unlike & conr

Poingr-o anstysis ks a static program analysis that consists of com.
puuting all objects (typically identified by aliocation site) that 2 peo-
gram varishle may point o, The ses of points-1o anslysis (snd
ian chose relative, alics anafyais) has boen the foce of intemse fe-
search and is smong the most standandired and well-undersood of
Imter-procedunl analyses. The emphasis of points-to analysis algo-
vithums is on combining fairly precise modeling of pointer behavior
with scalabiity. The ehallenge s 80 pick judcious sppensimatsany
st will allw satifactory precision at a reascsable cost, Further-
mare, akthough iscreasing precisicn sfien leads 1o highes siymp-
totic complesiy. this wersk-caes bebavior is ruely eacounisred in
Tassewd, sechniques that . .
g0 preciasa afien also exhitut betier average case peummc
since smaller poiats-10 sets lead 10 Jess work
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One of the major 1ools for explo
clsioaperformance tradeofl has beed
sensitivity comists of qualifying locd
conteat infareratson: the snalyis vl
name context value, while neparating
ent contets. This sppeach trics o col
naturally resslia in sy static analysi
from different dynamic program path)
sensitivity have been explored in the
[22, 23] and object-sensintviy [18, 1

A callsite-sensicive/ bCFA analyy
tabels of inansctios that may esll the
That is. the snalysis separates inform
mezthod arguments) per call-stack (i
meethod invocations diat led 50 the o

8 omtext-inseasitive snalysis) will &
mcthod foo on lines 7 and %, This mef
toa separatcly for two cascs: that of it
1o anything b1 may point i, and
b2 may point (o,

laas € {

voud foo(Dbjwer &) { ... }

}

eluas Clisny {
vaid bar(E €1, © 1)
#1. foslob)hi

€2 fostob) 2
]
¥

In contrast, ohject-sermitiity uaes sbj
of mractions containing 2 meu )
(Henor, @ better mame for “object-
“allocation-site scnsitivity™) That is
an ohject. the amalysis separates thel
the alloeation st af the receiver ob
the method is ealled), = well m

conleat, Thus, is the shave example
will analyse too scparatcly dependin
objects that <t and 3 may point 1. )
fragment meither whether c1 and <2

nor b0 how many ehjects: the alioca]
may be remote and unrelated 1o the
it is ot possible 10 compare the pr
and a call-ite-sensisive analysis in p
not even clear whether the object sef
all calls 1o foo s one case, a8 two,

Precision-Guided Context Sensitivity for Pointe

YUE LI, Aarhus University, Denmark

TIAN TAN, Aarhus University, Denmark

ANDERS M@LLER, Aarhus University, Denmark
YANNIS SMARAGDAKIS, University of Athens, Greece

Context sensitivity is an essential technique for ensuring high precision in Java poin)
observed that applying context sensitivity partially, only on a select subset of the m
balance between analysis precision and speed. However, existing techniques are
do not provide much insight into what characterizes this method subset. In this w]
principled approach for identifying precisi itical methods, hased on general pat
explain where most of the i hext-i itive pointer analysis.
an efficient algorithm to recognize these flow patterns in a given program and exp)
tradeoffs between analysis precision and speed.

Our experimental results on standard b and real ld show thi
applies context sensitivity partially, nnl}' on the lduntl['md pm:]smml:n al methods,
(98.8%) of the precision of a highly-p text-sensiti
with a context-sensitive h,uap} Wl[h a sub:lanual speedup (on average 3.4, and up

arises in

pointer ang
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1 INTRODUCTION
Pointer analysis is a fundamental family of static yses that esti i
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Abstract

Context-sensitivity is the primary appeoach for adding moee precl-
%i00 80 a poists-10 analysis, while hopefilly abw malptsising scal-
ability. An off-reported problem with costext-sensitive snslyses,
beraever, is that they are bi-modal: either the analysis is precise
enosgh hat it manipalues oaly manageable scts of dats. s thus
. well, of the anal: Iy derailed at the
of imprecision and becomes orden-of-magnitude more
expensive than woukd be expected given the progran's size. There
is curremtly no approach that makes
ses {of any favor call it object, o type-seasitive) scake acros
the board at a 1o that of anal-
yis. To address this |ssue, we propose. inlsospective anslysis: &
technique for unsfoemly scaling comtext-sensitive amalysis by elim-
snating ity pesformance-detrimental behavior, al & small precision
expense, Introspective analyds consists of a common adaptivity
patten: fint perfoem & constas-insensitive analysis, then use the

af points-to analysis is to yield usefully precise information without
sacrificing scalabulity: the snalysis imputs are large and the analysia
algorithens are typically quadratic or cubic, but try 1o maintain
nearlincar behuvics in practice, by exploiling program properties
= maintaining precision. |edeed precision asd sece often
g0 hand-in-hasd in a points4o analysis algorithen: better

algoritkens are often found 1o be both more peecise and faster
beeause smaller poists-o sets lead t Jess work [14]

Formaion ic.g.. “what objects this method argument can poin 1o”)
oves all possible exccutions that map to the same costext value,
while sequrating executions that map to differest contests. In this
from merg-
¢ peogram paths, Costen-
sennitivity comes in nany Navoes, depending on the kind of consext

. such 8 call ity [22. 23], obert-sensitivity

results to selectively refine (i.c.. snalyze ) peo-
gram elements that will not cause explosion s the renning time
o space. The techsdcal challmge is 10 appeopeiately Mentily such
program elements, We dow thal a simple bat pe spprcuach
can be semarksbly effective, schieving scalability {oflen with dra-
matic speed completely h
for doep content scmsitrve analyses

Categories and Subject Descriptors

2 [Logics and Meanings

af Program}: Semantics of Programming Langusges—Program
Amlysic: D34 [Progromming  Languages): ri—
Compilers

General Terms  Algorithms, Languages. Performance

Keywords poinis-to  anslysds:  comextsemsitivity.  object-

senitivaty; ype-scandiivity

pointer variables in a program. Such information is essential for reasonir
inter-procedural eontrol flow in object-oriented programs, and it is used in a o
engineering tools, e.g., for bug detection [Chandra et al. 2009; Naik et al.
analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshits and Lam 20)
tion [Fink et al. 2008; Pradel et al. 2012], and program debugging and unders|
Sridharan et al. 2007).

amalysis is probably the most common whole-program
ubstrate for a vasiety of high-
level program ssalysis tasks. Points-to analysss computes the st of
ohjects (abstracted as their allocation sitcs) that  program vatishle
may paint to during nantime. The promise, as well a the challenge,

s b ks il o B copues o

For decades, numerous analysis techniques have been developed to make
precise and more efficient, especially for object-oriented 1 [Hind 2
Balatsouras 2015; Sridharan et al. 2013). One of the most suceessful idea
precision is confext sensitivity [Milanova et al. 2002, 2005; Sharir and Pnud
Smaragdakis et al. 2011], which allows each program method to be analyzed urf

119, 20]. aod sype-sensitivity [24]

An oft-remarked fact about conteat-sensitivity, however. is that
ven the best algorithms have a comman failure mode when they
canpct muintsin precision, Past literature reports that “the perfoe.
mance of a || deep-context amalysis is bimodal” [24]: “comtext-
sensitive analyses have hees associsted with very Large sumbers of
costeats” [15]; “algarithes complessly bt 3 wall afler & few lter-
sthons, with the pemmber of taples expliding expoasatially” [16]
Recent published resules [12] fail 10 run a 2-ohject-seasitive analy-
sia in under Smims for 2 of 10 DaCapo benchmarks. while 2 moee
benchemarks 1ake moee than 1,000k, alibough most other bench-
marks of sinsilar or Larger size get analyzed in under 20sce

Thus, when comens-senitivity works, it works formidably, i
terms of both precision and performance. When it fails, however,
it Fails miserably, quickly exploding in complenisy. In comtrast,
context.insensitive analyses uniformly scale well, for the same in-
puts. Figure | vividly demoestrates this phenomenon for the Da-
Capo benchmarks, analyzed with the Doop fremework [2] under &
ensient. insensicive (insens) analysis and & 2-object-sensstive anal-
yaks with & contexs-senaitive heap (2obsH). [The chan truncates the
smalysis time of the longest-running benchmarks. Twno of them,
hsqhdh and jython. timed out after 0mine on & 24GH machine.
and would oot terminale even for much loager timeouts ) As can
be seen, contexi-nsensitive analyses vary relatively little in per
farmance, while context-sensitivity often canses rnning time (snd
memoey use) 10 explode

Faced with this snpredicrability of contexi-sensitivity, a coe-
moa reaction b to wvold i, frveeiag context-inscnsitive analy-
ses, and, comsequently, missing sipnificant precision benefits for
well-behaved programs. Even warse, for some applications, e
chewing expensive coatext-semsitiviy is nOC a8 OPtion— comtext.
imsemitive amalysis is just not good enough. Reports from isdus-
try (4] and scadesnic rescarchens [3] alike relserme thet peecise

to sef  the static abstractions of different dynamic instantiations of the
Authors” email addresses: yuel) ke, . dk, au.dk, g i uoa .
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3 Making k-Object-Sensitive Pointer Anal

.0 More Precise with Still k-Limiting

A Machine-Learning Algorithm with Disjunctive M
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. Republic of K
-8 epublic of ¥ores, Abstract. Object-sensitivity is regardod as arguably the best co
We present a new machine-] g algorithim with di model for data-driven p abstraction for pointer analysis in object-oriented languages. Howe:

P One major challenge in static program analysis is a substantial ansount of manual effort req k-object-sensitive pointer analysis, which uses  sequence of k alloc

the analysis performance. Recently, data-driven program analysis has emerged to addre:
by automatically adjusting the analysis based on data through a learning algorithm. Al
approach has proven promising for various program analysis tasks, its effectiveness has

o simple-minded learning models and algorithms that are unable to capture sophisticaty
disjunctive, program propertics. To overcome this shortcoming, this article presents a new d]
far data-driven program anabysis as well as a learning algarithm to find the model parameters|

sitos (as k context elements) to represent a calling context of 4 me
call, may end up using some context elements redundantly witho

ehucing n finer partition of the space of (concrete) calling contexts fo
method call, In this paper, we introduce BEAN, & general apprond
improving the precision of any k-object-sensitive annlysis, denoted &
by still using a k-limiting context abstraction. The novelty s to ide

3 / ] X allodation sites that are redundant context elements in k-obj fro

[ boolesn formulag aver alomic features and therefure Iy shle o expeces rionliness combinat Object Allacation Graph (OAG), which is built based on a pro-an
Pe properties. Key technical \hullcnsr is crﬁv:bcnﬂ? dm-nmn.e a set of good boolean formulsy (2.8, & context-insensitive Andersen's nnnlysis) performed nitially|
;a“l;'h u.:mldl:]lmr!g '*hlmr!l'-u:""‘] We r'r"""'“: stepwise "": greedy "ﬁ*’f"h"’h"“‘ 9 program and then avoid them in the subsequent k-object-sensitive
* ean formulas. We show the eff an lity of our al, hum with tw:

context-sensitive points-to analysis for jnv:. and flow-sensitive interval analysis for C. Expd
show that our technique improves the of the state-of-tH
including ones hand-crafted by human experts.
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vuis for the program. BEAN is generally more precise than k-obj, w
prees Is guaranteed to be as good as k-obj in the worst casd
have implemented BEAN as an open-source tool and applied it 1o
two state-of-the-art whole-program pointer analyses in Doop. Fo
reprosentative clients {may-alias and may-foil-cast) evalunted on a 4
: Inrge Java progrums from the DaCapo benchmark suite, BEAY
succeoded in making both analyses maore procise for all these benchn]
under each client at only small increases In analysis cost
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client applications, including bug detection [3, 25, 35, 34|, security anal
compiler optimisation [6,33), and program understanding [12]. Tw

Y 1 INTRODUCTION mensions of pointer analysis precision are flow-sensitivity and context
- One major challenge in static program analysis is a suhst:mtml amount of manual [C4+ Brogras, flow-sensitivity is needed by many clients [11
I 4 for tuning the analysis p ¢ for real id Practical static anal i however, context
\ D variety thcunsucslu optimize their pﬂ'formnnu‘ [ur example, context-sensitiv is known to deliver trackable and useful precision [17, 19-21, 28-30],

for analyzing object-oriented programs, as it distinguishes method's local variables
different calling-contexts. However, applying context-sensitivity to all methods §

of all variable relationships in the program, static analyzers employ variable-clust
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does not scale and therefore real Id static ¥ apply context ity on|
methods d d by some h rules [Smaragdakis et al. 2014]. Anothe obtant 4 i o N o
relational analysis such as ones with Octagons [Miné 2006]. Because it is impracticy object-sensitive analysis uses k object alle

There are two gmcrn.l approaches to ﬂc‘h]c"\mg context-sensitivity

k labels with each denoting a new statement) as context clements,
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ABSTRACT
Context-semstivity s importast I polnter analysis to essuse high
precision, but existing techniques suffer from urpredictable scala- -
Bility. Many varisnts of context-senailivity exist, and it alt

e that leads

o reasonable a

, without run
We prresent the Scaten framework that sddresses this problem. A
Scaven r]ll\lrll!lv ElLquIe the amount of points-to information e
tha ariants

of contet-sensitvity. 6 then sebects an appropriate variant for -
each method so that the total amou isformation is
ounded, while uu_m:\glhe available space to maximize peecision.

O that Scaten ach .
dictable scalability for all the evahsated programs (e.g. \pmeupx
«can reach 10x for 2-object-sensitivity). while providing » precision
that matches or even exceeds that of the best alternative techniques

Figure 1: Cam
senaitivity, 2-1]
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Abstract

Conteal-scamiive points-40 analysis is valuable for achieving kigh
peeciion wi good performance. The Havers of context
sensitivity are call-se-sensitivity (RCPA} and objevt-sensitivity,
Combiming beth flavors 0f context-sensilivity increases percisson
but st an isfrasibly high cost. We whow that 3 selective comibi-
ralion of callsile. and object-sensitivity for Java points-to anal
s in highly proftable. Namely, by keeping a combined context
oaly when salyring selected language features, we can closely
approsimats the peecision of an amalysis that keeps both comexts
at all times. In terms of speed, the selective combination of both
kinds of contiat st cely vausly cetperforem pon-seledive combi-
eaaticnns bt i 4l St thuan 5 e ebject-sesitive analysis This
resailt holds for & large sreay of amalyies (e,
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Poingr-o anstysis ks a static program analysis that consists of com.
puuting all objects (typically identified by aliocation site) that 2 peo-
gram varishle may point o, The ses of points-1o anslysis (snd
ian chose relative, alics anafyais) has boen the foce of intemse fe-
search and is smong the most standandired and well-undersood of
Imter-procedunl analyses. The emphasis of points-to analysis algo-
vithums is on combining fairly precise modeling of pointer behavior
with scalabiity. The ehallenge s 80 pick judcious sppensimatsany
st will allw satifactory precision at a reascsable cost, Further-
mare, akthough iscreasing precisicn sfien leads 1o highes siymp-
totic complesiy. this wersk-caes bebavior is ruely eacounisred in
Tassewd, sechniques that .

g0 preciasa afien also exhitut betier average case peummc
since smaller poiats-10 sets lead 10 Jess work
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from different dynamic program path)
sensitivity have been explored in the
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Context sensitivity is an essential technique for ensuring high precision in Java poin)
observed that applying context sensitivity partially, only on a select subset of the m
balance between analysis precision and speed. However, existing techniques are

do not provide much insight into what characterizes this method subset. In this w]

Abstract

Context-sensitiviry is the primary appevach foe adding moee preci-

si0 b0 a poists-to analysis, while hopefully also majntaising scal-

ability. An oft-reported problem with costext-sensitive snalyses,

berwever, is that they are bi-modal: cither the analysis is precise

encesgh b It manipelaces oaly manageable s of data. and trus
. 1 oo

expensive than woukd b expesied given the program's size. There
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af points-to analysis is to yield usefully precise information without
sacrificing scalabulity: the snalysis imputs are large and the analysia
algorithens are typically quadratic or cubic, but try 1o maintain
nearlincar behuvics in practice, by exploiling program properties
= maintaining precision. |edeed precision asd sece often
g0 hand-in-hasd in a points4o analysis algorithen: better

algoritkens are often found 1o be both more peecise and faster
beeause smaller poists-o sets lead t Jess work [14]

well, or the led at the
of imprecision and becomes orden-of-magnitude more

principled h for identifying precisi itical methods, based on general pat :T‘:o{anl:ﬂmal (a]h:vli':alt:;:::- o type-semaitive) scale acrons "’
i - I o vedaln s thaiof ks Formation fe.g., “what objects this method argument can point o)
arises in

explain where most of the i pointer analysis.
an efficient algorithm to recognize these flow patterns in a given program and exp)
tradeoffs between analysis precision and speed.

Our experimental results on standard b and real ld show thi
applies context sensitivity partially, nnl}' on the lduntl['md pm:]smml:n al methods,
(98.8%) of the precision of a highly-p text-se
with a context-sensitive h,uap} Wl[h a sub:lanual speedup (on average 3.4, and up
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1 INTRODUCTION
Pointer analysis is a fundamental family of static analyses that esti ! W

yis. To address this |ssue, we propose. inlsospective anslysis: &
technique for unsfoemly scaling comtext-sensitive amalysis by elim-
snating ity pesformance-detrimental behavior, al & small precision
expense, Introspective analyds consists of a common adaptivity
paien: fist perfoem & conkal-inseniitive analysis, then use the
results 0 selectively refine (e, analyze ) peo-
ive pointer andl  Fram elements that will not casse explosion in the renaing time

o space. The techadcal challenge bs 1o appeopeiatel
program elements, We dow thal a simple bat pe
can be semarksbly effective, schieving scalability {oflen with dra-
matic & h
for doep content scmsitrve analyses

Categories and Subject Descriptors

senitivaty; ype-scandiivity

over all possibile expcutions that map bo the same costext value,
while separating executions that map fo differend contexts. In this
fro merg-
¢ peogram paths. Comext-
sensitivity comes i nany favoes, dependsng on the kind of ecasext

. such s col ity [22, 23], objecr-sensitivity
119, 20]. aod sype-sensitivity [24]

An oft-remarked fact about conteat-sensitivity, however. is that
even the best algorithms have a common failure mode when they
canpct muintsin precision, Past literature reports that “the perfoe.
mance of a || deep-context amalysis is bimodal” [24]: “comtext-
sensitive analyses have hees associsted with very Large sumbers of
costeats” [15]; “algarithes complessly bt 3 wall afler & few lter-
stioes, with | of teples exploding expossatially” [16]

iy such
spqurach

compitely

the pnber

2 [Logics and Meanings

af Program}: Semantics of Programming Langusges—Program Recent publashed results [12] fail 10 run a 2-object-seasitive analy-
Amlysic; D34 |Programming  Languages: re— si i under Hmiss for 2 of 10 DaCapo benchmarks, while 2 mose
Comgilers henchemarks 1ake moee than 1,000k, althon, nst otheer Bench-
marks of sinsilar or larger size get analysed in under 20scc.
Gemernl Terms  Algorithms, Langusges, Performance Thiss, when comtext-semitivity works, it works formidably, i
Fo Hokas.. woatyales - ootk sy hlech. terms of both procision and performance. When it fails, however,

it Fails miserably, quickly exploding in complenity. In contrast,
‘comtext-insensitive analyses unifarmly scale well, for the same in-
puts. Figure | vividly demossirates this phenomenon for the Da-

pointer variables in a program. Such information is essential for reasonir
inter-procedural eontrol flow in object-oriented programs, and it is used in a o
engineering tools, e.g., for bug detection [Chandra et al. 2009; Naik et al.
analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshits and Lam 20)
tion [Fink et al. 2008; Pradel et al. 2012], and program debugging and unders|
Sridharan et al. 2007).

level program ssalysis tasks. Points-to analysss computes the st of
ohjects (abstracted as their allocation sitcs) that  program vatishle
may paint to during nantime. The promise, as well a the challenge,

Capo benchmarks, analyzed with the Doop fremework [2] under &
ensient. insensicive (insens) analysis and & 2-object-sensstive anal-
yaks with & contexs-senaitive heap (2obsH). [The chan truncates the
smalyais time of the longesi-runnisg benchmarke. Twn of them,
haqhdb and jython, timed out after Yeming on & 248 mackine,
and would oot terminale even for much loager timeouts ) As can
be seen, contextinsensitive analyses vary relatively lintle in per
farmance, while context-sensitivity often canses rnning time (snd
memoey use) 10 explode

Faced with this snpredicrability of contexi-sensitivity, a coe-
moa reaction b to wvold i, frveeiag context-inscnsitive analy-

amalyzis i+ probably the most comman whole-program
ubstrate for a vasiety of high-

s b ks il o B copues o

For decades, numerous analysis techniques have been developed to make
precise and more efficient, especially for object-oriented 1 [Hind 2
Balatsouras 2015; Sridharan et al. 2013). One of the most suceessful idea
precision is confext sensitivity [Milanova et al. 2002, 2005; Sharir and Pnud
Smaragdakis et al. 2011], which allows each program method to be analyzed urf

g 52 0 ol

ses, and, comsequently, missing significant precision benefits for
well-behaved programs. Even worse, for some applications, es
chewing expensive coatext-semsitiviy is nOC a8 OPtion— comtext.
imsemitive amalysis is just not good enough. Reports from isdus-
try (4] and scadesnic rescarchens [3] alike relserme thet peecise

to sef  the static abstractions of different dynamic instantiations of the
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e Call-site Sensitivity has been ignored

o not discuss our approach for call-site sensitivity™ |
Jeon et al. [2019] |}
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1 Making k-Object-Sensitive Pointer Ana|
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h Republic of Korea Abstract. Object-sensitivity is regarded as arguably the best co
We present a new machine-learning algarithm with di model for data-driven p abstraction for pointer analysis in object-oriented languages. Howe

One major challenge in static program analysis is a substantial amount of manual effort regf
the analysis performance. Recently, data-driven program analysis has emerged to addre:
by automatically adjusting the analysis based on data through a learning algorithm. Al
J approach has proven promising for various program analysis tasks, its effectiveness has
J o simple-minded learning models and algorithms that are unable to capture sophisticaty
0 disjunctive, program propertics. To overcome this shortcoming, this article presents a new d]
: far data-driven program anabysis as well as a learning algarithm to find the model parameters|
{ boalean formulas over atomic features and therefore is able to express nonlinear combina]
properties. Key technical challenge is efficiently determine a set of good boolean formuld
. search would simply be impractical. We present a stepwise and greedy algorithm that ¢
A boolean formulas. We show the eff and lity of our al, hm with two
Ak context-sensitive points-to analysis for jnv:. and flow-sensitive interval analysis for C. Expd
5 show that our technique improves the of the state-of-tH
1 including ones hand-crafted by human experts.
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\ 1 INTRODUCTION

i One major challenge in static program analysis is a suhst:mtml amount of manual
' 3 for tuning the analysis p e for real id Practical static anal
A) variety of heuristics to optimize their pﬂ'formnnu‘ [ur example, context-sensitiv
for analyzing object-oriented programs, as it distinguishes method's local variables
different calling-contexts. However, applying context-sensitivity to all methods §

does not scale and therefore real Id static ¥ apply context itivity onj
methods d d by some h rules [Smaragdakis et al. 2014]. Anothe]
relational analysis such as ones with Octagons [Miné 2006]. Because it is impracticy

of all variable relationships in the program, static analyzers employ variable-clust

J “The first and second sathors contributed equally to this work

k-object-sensitive pointer analysis, which uses a sequence of k allos
sitos (as k context elements) to represent a calling context of 4 me
call, may end up using some context elements redundantly witho
ehucing n finer partition of the space of (concrete) calling contexts fo
method call, In this paper, we introduce BEAN, & general apprond
improving the precision of any k-object-sensitive annlysis, denoted &
by still using a k-limiting context abstraction. The novelty s to ide
allocation sites that are redundant context elements in k-obj fro
Object Allocation Graph (OAG), which is bullt based on a pre-an;
(e, & context-insensitive Andersen's analysis) performed initinlly|
program and then avoid them in the subsequent k-object-sensitive
vuis for the program. BEAN is generally more precise than k-obj, w
prees Is guaranteed to be as good as k-obj in the worst casd
have implemented BEAN as an open-source tool and applied it 1o

two state-of-the-art whole-program pointer analyses in Doop. Fo
reprosentative clients {may-alias and may-foil-cast) evalunted on a 4
: Inrge Java progrums from the DaCapo benchmark suite, BEAY
succeoded in making both analyses maore procise for all these benchn]
under each client at only small increases In analysis cost

o th

1 Introduction

Pointer analysis, as an enabling technology, plays a key role in a wi
client applications, including bug detection [3, 25, 35, 34|, security anal
compiler optimisation [6,33), and program understanding [12]. Tw
menstons of pointer analysis precision are flow-sensitivity and context
/G- programs, flow-sensitivity is heeded by many clieats 1
however, context
s known to deliver trackable and useful precision [17, 19-21, 28-30],
There are two gmcrn.l approaches to ﬂc‘h]c"\mg context-sensitivity,

Jnthu teascisitlin aatrule dens & nh,«-: allc
k labels with each denoting a new statement) as context clements,
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ABSTRACT

Context-sertivily s importast i polnter analysis to cnsuse high
precision, but existing techniques suffer from usgiredictable scal-
bility. Many variants of context-sentivity exist, and it i alt
e that leads to reasonable a
, without run
We prresent the Scarn framework that sddresses this problem
Scaven r1|l\|r||!|‘f flLIlIuIe the amount of points-to information
tha ar
of contet-sensitvity. 6 then sebects an appropriate variant for
ench method 30 that the total st sformaticn i
bounded, while ..u_m:\gulw vailable space to maximize peecision.

Our that Scaten ach

dictable sealabilty for all the evaluated program (e . speedups
«can reach 19x for 2-object-senitivity). while providing & precision
that matches or even exceeds that of the best altemative techniques.
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Abstract

Conteal-scamiive points-40 analysis is valuable for achieving kigh
peeciion wi good performance. The Havers of context
sensitivity are call-se-sensitivity (RCPA} and objevt-sensitivity,
Combiming beth flavors 0f context-sensilivity increases percisson
but st an isfrasibly high cost. We whow that 3 selective comibi-
ralion of callsile. and object-sensitivity for Java points-to anal
s in highly proftable. Namely, by keeping a combined context
oaly when salyring selected language features, we can closely
approsimats the peecision of an amalysis that keeps both comexts
at all times. In terms of speed, the selective combination of both
kinds of contiat st cely vausly cetperforem pon-seledive combi-
eaaticnns bt i 4l St thuan 5 e ebject-sesitive analysis This
resailt holds for & large areay of amalyses e, 1-object-scasitive,
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Poingr-o anstysis ks a static program analysis that consists of com.
puuting all objects (typically identified by aliocation site) that 2 peo-
gram varishle may point o, The ses of points-1o anslysis (snd
ian chose relative, alics anafyais) has boen the foce of intemse fe-
search and is smong the most standandired and well-undersood of
Imter-procedunl analyses. The emphasis of points-to analysis algo-
vithums is on combining fairly precise modeling of pointer behavior
with scalabiity. The ehallenge s 80 pick judcious sppensimatsany
st will allw satifactory precision at a reascsable cost, Further-
mare, akthough iscreasing precisicn sfien leads 1o highes siymp-
totic complesiy. this wersk-caes bebavior is ruely eacounisred in
Tassewd, sechniques that .

g0 preciasa afien also exhitut betier average case peummc
since smaller poiats-10 sets lead 10 Jess work
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Introspective Analysis: Context-Sensitivity, Across the Board
Yannis Smaragdakis Yannis Smaragdakis ~ George Kastrinis  George Balatsourns.
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.. . Py . Usiversity of Athens
Precision-Guided Context Sensitivity for Pointe (s ghant ot ghalais} 06 ioa g7
YUE LI, Aarhus University, Denmark
TIAN TAN, Aarhus University, Denmark
One of the major tools for expi o Abstract of points-io analysis is to yield usefully precise iformation without
clsisaiperformance tradeoft has beef] ANDERS MOLLER, Aarhus University, Denmark Context-sensitivity is the primary approach for adding more precl.  Saerificing scalabality: the analysis ispuils are large and the anlysis
senstivily comnls of qualifving o) YANNIS SMARAGDAKIS, University of Athens, Greece sion b a poists-1o analysis, while hopefully alw maintaining scal- Aot are Dypically quadratic or cubic. but iry w0 maintain
cantess infreration; the ssalysss ural abilty. An of-eporied probcan wih consst senaiive ssyses, PO linear behavior in prhl::;':ab;’ c:\plc!llul\gdpmgrlm propenies
vame conteat value, while separating ] i . . o o . ey ke le i ‘maintaining precision. precision nece ofien
e contexts. This sppevsch ries to cof]  COntext sensitivity is an essential technique for ensuring high precision in Java poin} :‘:::;h: ::‘“":if‘w‘;h;“ﬂ:;':‘:lr:‘:':r"dmf e g0 hand-in-hasd in a peinis-4 analysis algorithers: betier
naturally resslt in sy static anatysifl observed that applying context sensitivity partially, only on a select subset of the m i Tl Gt il devailed st the algorithens are ofien found 10 be both more precise and faster
from different dymamic presran O halance between analysis precision and speed. However, existing techniques are of kmpeeciion and becomes ondersof-magniude more  DECRIE WAEr pUBALLD sew lead 1 lews ork (1)
[22, 2] and obecr-sensiriviry |18, 19 do not provide much insight inte what characterizes this method subset. In this w] ::::’:—::I-ﬂw mew "f”::l':‘:':_s"" e progriae S, Thers
A clt-ineaeniiave/(CFA smabll - principled approach for identifying precision-critical methods, based on general patll e (of any ﬂmu(l callsite-,object., of type-seaitive) seale actoss ¥
Iabels of inmsctioss that may eall the i vk Fihe N R - alysi ko' Ao ol anal.  Tormation (e.g., “what objects this method argument can point )
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Mm arguments | :’ C;L'i Hh:;‘:- an efficient algorithm to recognize these flow patterns in a given program and expl  i.chasque for unifonmly scsling cosseat-sensitive analysis by elin- while separating executions that map to different contexts. In this
e mnbyris separaen formutio ca] 18de0fTs between analysis precision and speed. insting sy performance-desrimental behavior. at a small precision Ay st M""{'“m{
et imvocasions hat ed 10 the o Our experimental results on standard b and real-world | show thf ~ “Peme "]I':'l"r.":“w';“""_"'h“’ T::":i::“": ;‘:]‘;T:"u"‘ﬁr:‘l"‘; scasltivity comes in many Revors, depeading on the kind of consext
plredssyrbimens ,,..1_' nal applies context sensitivity partially, only on the lduntl['md pm:]smml:n al methods, ] results to selectively refine (i.e.. analyze ) peo- oo N'"‘" an cal o [22. 3], objecr-senstiivity
a cetrer-insensitive smabysia) wi - et ! 2 tvpe-sensiivity [2
method £00 on lines 7 and %, This mefl  (98.8%) of the precision of a highly-y e pointer any g":;:':"‘r‘,:‘:;h:;:;,"‘:"’;I:I';‘:“I:""'w’“z‘ﬂ“ v S An oft-remarked fact about comtext-sensitivity, however, is that
fon m';ﬂlrl: foe twocascs: "mfa" with a context-sensitive h,uap} wuh a substantial speedup (on average 3.4X, and up CETE LT W s that 8 simple bt pe sppmach  ©¥E0 the best algorithms have a common fuilure mode when they
1o anything eb31 may point i, a r «cannot muintain precision. Past liserature reports that “the perfor.
n . . . 1 be femarkshly effective, aften with dra-
aby3 may point 10 €CS Concepls: « Theory of computation — Program analysis; b e e e mance uf a ... deep-coneat amalysis & bimodal” (24]; “comtent-
G BT Tor deep coanes ssasiive aclyms G Rr seasitive anlyses have been associated with very large sumbers of
void feoiObject o) { ¥ Additional Key Words and Phrases: static analysis, points-to analysis, Java contents” [15]; “alporthes complesely hit a wall afier o few iter-
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. i@ g INTRODUCTION i ‘comext-insensitive analyses uniformly scale well, for the same in-
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of imstructions contsining o new wsl Pointer analysis is a fundamental family of static analyses that ! IS Capo benchmarks, analyzed with the Doap fremework [2] under &
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e Call-site Sensitivity has been ignored
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Call-site Sensitivity vs Object Sensitivity

Currently, call-site sensitivity is known as a bad context
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A technique context tunneling is proposed

! ‘)
e Y
N N
’
v 4 Precise and Scalable Points-to Analysis via Data-Driven | )
) Context Tunneling A
s q SEHUN JEONG, Korea University, Republic of Korea o o = ; el = g o . M s - v Sl 3 s i i i . S i > “ o ol > N T o = - ' N 8 3 ¢ _ S S ¥ BESI ~ o N |
) HAKJOO OH?, Korea University, Republic of Korea % t § ' 4

‘We present context tunneling, a new approach for making k-limited context-sensitive points-to analysis 5%
B precise and scalable. As context-sensitivity holds the key to the development of precise and scalable points-to .

0 analysis, a variety of techniques for context-sensitivity have been proposed. However, existing approaches
b such as k-call-site-sensitivity or k-object-sensitivity have a significant weakness that they unconditionally
update the context of a method at every call-site, allowing important context elements to be overwritten
by more recent, but not necessarily more important, context elements. In this paper, we show that this is a
v key limiting factor of existing context-sensitive analyses, and demonstrate that remarkable increase in both -

] [ o , .
h precision and scalability can be gained by maintaining important context elements only. Our approach, called \ B
) | context tunneling, updates contexts selectively and decides when to propagate the same context without ) S !
! modification. . 3 b
9 [ ‘We attain context tunneling via a data-driven approach. The effectiveness of context tunneling is very ) /\\I ¢
A sensitive to the choice of important context elements. Even worse, precision is not monotonically increasing g ! o

v with respect to the ordering of the choices. As a result, manually coming up with a good heuristic rule for -
t context tunneling is extremely challenging and likely fails to maximize its potential. We address this challenge E
by developing a specialized data-driven algorithm, which is able to automatically search for high-quality B~ v ) Y
heuristics over the non-monotonic space of context tunneling. e "N R

‘We implemented our approach in the Doop framework and applied it to four major flavors of context- e : !
'] sensitivity: call-site-sensitivity, object-sensitivity, type-sensitivity, and hybrid context-sensitivity. In all cases, =
v 1-context-sensitive analysis with context tunneling far outperformed deeper context-sensitivity with k = 2 in

! both precision and scalability. it "
CCS Concepts: « Theory of computation — Program analysis; - Computing methodologies — Ma- I I o A {‘
p chine learning approaches; ) , ), @

Additional Key Words and Phrases: Points-to analysis, Context-sensitive analysis, Data-driven program
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Call-site Sensitivity vs Object Sensitivity

e Context tunneling can remove the limitation of call-site sensitivity

class C{ —
id(v){ ! 4
return v, 9
:id 1 (v) / -m
. return idO(v);} [*] >
%nain(){ I\O\
cl = new C();//ClI 4

c2 = new C();//C2 . .
a = (A) cl.idl(new A());//query] | -CFA with context tunnellng

= (B) c2.idl (new B());//query?2 (T: {4})

S\PPF’}'S’.‘H".-"W!\.’.—..C?

—

28



Call-site Sensitivity vs Object Sensitivity

Tunneling abstraction: th context tunneling
Determlnes where to apply context tunnellng {T= {4})

29



Call-site Sensitivity vs Object Sensitivity

4
m
4

| -CFA with context tunneling

| Unimportant call-sites that should not be used as context elements |



Call-site Sensitivity vs Object Sensitivity

, Apply context tunnellng
Inherlt caIIer method’s context

—I-CFA W|th contexttunnye“ng
(T= {4})

31



Call-site Sensitivity vs Object Sensitivity

 Context tunneling can remove the limitation of call-site sensitivity

0: C{

. V;

o) o /

S S [*] \

6: main(){ id |

7: cl = C(); [|O]

8: c2 = C();

9: a = (A) cl.idl(new A()); | -CFA with context tunne ng
0: b = (B) c2.idl (new B(); T= {4 i
o }

Wlth tunnellng, I CFA separates the nested method caIIs



Call-site Sensitivity vs Object Sensitivity

* Object sensitivity still suffers from its limitation

class C{
id(VI{
return v;} Call-graph of 1-Obj with
] | tunneling T
main(){

cl = new C();//CI
a = (A) cl.id(new A());
b = (B) cl.id(new B());

| -ODb; +TunneI|ng
¢ = (C) cl.id(new C()): (T'=

NV O N AWM O

)

33



Call-site Sensitivity vs Object Sensitivity

e Object sensitivity still suffers from its limitation

Unable to separate the
three method calls with the

main(){ i two contexts

cl = new C();//CI

a = (A) cl.id(new A()); : :
b = (B) cl.id(new B(): |-ODbj + Tunneling

¢ = (C) cl.id(new C()): (T=1)
}

34



Call-site Sensitivity vs Object Sensitivity

e Object sensitivity still suffers from its limitation

1 l
id(v){ {678} T n
K K
main(){ [ ] [ ] [7]
cl = C() [*]
a = (A) cl.id(new A())

b = (B) cl:id( B());’ |-ODbj + Tunneling .

¢ = (C) cl.id(new C()): (T=1) |-CFA

Voo NoOLUL A WDN —O

Call-site sensitivity easily separates the three method calls




Call-site Sensitivity vs Object Sensitivity

Observation
When context tunneling is included
e Limitation of call-site sensitivity is removed

* Limitation of object sensitivity is hot removed

36



Call-site Sensitivity vs Object Sensitivity

Our claim

, If context tunneling is included,
\ call-site sensitivity is more precise than object sensitivity /
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Our Technique : Obj2CFA

e Obj2CFA transforms a given object sensitivity into a more precise CFA
xalan
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Our Technique : Obj2CFA

e Obj2CFA transforms a given object sensitivity into a more precise CFA

2500

xalan

2000

=

Ul

o

o
i

analysis time (s)
S
o
S

500F

~_Scalable

| ob

“ . . ’ :./
e b 4| k.
' ° 3 3

\

20bjH
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o 7% A S e
° ¥ 7
P o/
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| Given state-of-the art |-object |
| sensitivity with tunneling |

|objH+T is even more
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Our Technique : Obj2CFA

e Obj2CFA transforms a given object sensitivity into a more precise CFA
xalan

2500

2000

, Transformed call-site sensitivity via Obj2CFA |

SR S eA | objH+T
t | callH+SL Ob‘
t (ours) pmé—"
8001‘,,, ﬁ,L‘ﬁy,_f5166o . L L iy
Halarms

Precise
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Our Technique : Obj2CFA

e Obj2CFA transforms a given object sensitivity into a more precise CFA
xalan

2500

| lcallH+SL is far more precise than |objH+T 1

1000}

: | gbjH+T

| callH+SL: N

(ours) . :
a

o 600 650 e 700 750 800
Halarms

P$ise

O |
500 55




Our Technique : Obj2CFA

e Obj2CFA transforms a given object sensitivity into a more precise CFA
xalan

2500

-: _,‘.,.,, S ere o ETT S S e e Aoy B sz ST, e PR B S ey v Lo posae ST N T O e ” L posae PR T BT ey v L b oo s v o Lo bosae gl e e o e e v Lo b SR e S 2 e e o e v L e e ve s oo el ie v g e _
V' . s o - b ~ - T - ~ - ~ ~ -~ ~ ~ ~ ~ ~ ~ &
A

|| callH+SL is more scalable than |objH+T;

analysis time (s)
.
o
=

500F

_____Scalable

42



Detail of Obj2CFA



Our Technique : Obj2CFA

e ObJ2CFA consists of simulation and simulation-guided

700

600} | CB.”H"‘S
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~_Scalable
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Our Technique : Obj2CFA

e ObJ2CFA consists of simulation and simulation-guided

—{ Find an expensive but more precise CFA
e 1 R U —

500

400

300

200

~_Scalable

100}

O | | | | | |
560 580 600 620 640 660 680 700

Precise



Our Technique : Obj2CFA

e ObJ2CFA consists of simulation and simulation-guided

700

600/ | CB.”H"‘S

500

400

300

200

~_Scalable

Improve scalability |

100}

B iH+SL

O | | |
560 580 600 620 640 660 680 700

Precise



Technique |: Simulation

* Running example to illustrate Simulation
|: class C{

2:  id(v){return v;}

3: idl(v){return id(v);}

4. foo(){

5: Aa=(A) this.id(new A());}//query
6: Bb = (B) this.id(new B());}//query2
7.}

8: main(){

9

cl = new C();//CI

10: ¢c2 = new C();//C2

1 1: ¢3 =new C();//C3

12: Aa=(A)cl.idl(newA());//query3

13: B b= (B) c2.idl(new B());//query4

14:  c3.foo();

15: } 47



Technique |: Simulation

* Running example to illustrate Simulation
class C{

id(v return v;

oo
A a = (A) this.id(new A());}//query
B b = (B) this.id(new B());}//query2
;

main(){
cl = new C();//CI

c2 = new C();//C2

c3 = new C();//C3
A 2 = (A) cl.idl (new A()) //query3
(B b = (B) c2 |d I (new B()) //query4
“¢3.foo();

KGG;§9WH?Q%WN7

——

(id| (v){retu rn |d(v) }

48

Limitation of conventional |-CFA

1D
[12]

maln .
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Technique |: Simulation

* Running example to illustrate Simulation

class C{
id(v){return v;}
id| (v){return id(v);

|
2
3
4. foo(){ '
5:1 Aa= (A) this.id(new A()) }//queryl
6

7

8

9

- {_Bb=(B) this.id(new B))}/query2 ] ~ ¥ Limitation of object sensitivity

e
: main(){ foo | 2,6 id

. ¢l = new C(); //CI c31 |~ | [c3
10: 2 = new C(); //C2

1 1: ¢3 =new C();//C3

12: Aa=(A)cl.idl(newA());//query3
13: B b = (B) c2.idl(new B());//query4
14 [E3T0())




Technique |: Simulation

e Given object sensitivity is conventional |-object sensitivity (e.g.,T = &)
|: class C{

id(v){return v;} 3
id | (v){return id(v);} 19 —»
foo()1 P
A a = (A) this.id(new A());}//query . |3 . 3 .
B b = (B) this.id(new B());}//query2 m qn_,“
} [*] [D2] [D2]
: main(){
. ¢l = new C();//CI '4 fOO
10:  ¢2 = new C();//C2 [D3] [D3]

1 1: ¢3 =new C();//C3

12: Aa=(A)cl.idl(newA());//query3 : —

13: Bb = (B) c2.idl (new B())://query4 lobjH+T (T = )
14:  c3.foo();

15: } 50
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Technique |: Simulation

e Simulation takes a call-graph and produce a tunneling abstraction for CFA

Simulation

— {}

' Tunnellng abstractlon for I CFA
|lobjH+T (T = @) e

51



Technique |: Simulation

e Simulation takes a call-graph and produce a tunneling abstraction for CFA

Slmulatlon

T = {3)

| objH+T (T = &)

52



Technique |: Simulation

e Simulation takes a call-graph and produce a tunneling abstraction for CFA

Slmulatlon

T ={3}

(I1 u 12)
| objH+T (T D)

Need tunnellng to simulate the glven object sen5|t|V|ty



Technique |: Simulation

e Simulation takes a call-graph and produce a tunneling abstraction for CFA

Slmulatlon

1y
) 1t
91 P
13 b %
" i )
d f
) 2 . |
| i $ ‘:
R s ivavosiutiliue :
: % 3
o 0 4 4 '
| - e e o PR S NP e _ i asnd ons ¢4
O | “~  A
< ~ = 3 ~ ~ S SET RS ~ ~ hY ~ ~ 3 ~ » v S < - Spsy N < v - - < e S - < v - "-‘\
P
] ,

ﬁ Tunneling should be avoided for improving precision

T = {3)




12 && . . . |
Intuition of Simulation

[*] [D2] ? Suppose the call-graph is produced from

foo | 1-CFA + T’ and infer the T’

callH +T’ == WhatisT? |
Cd atIs | ¢ §

S -



Intuition Behind Simulation (/; U [,)

* If tunneling is applied to i, two properties inevitably appear at i

| We track the two properties to find the T |

56



Intuition Behind Simulation (/; U [,)

* |f tunneling is applled to i, two propertles inevitably appear at |

Tunnellng s applled

goo
[ctx | ] [ctx I

Property of context tunneled caII S|tes

. Property |: caller and callee methods have the same context

o57



Intuition Behind Simulation (/; U [,)

* |f tunneling is applled to i, two propertles inevitably appear at |

Tunnellng s applled

foo | i [ goo
fetx|] = | [cox!]

foo |
goo
— (Ueo2)

Property of context tunneled mvocatlons
. Property 2: different caller contexts |mply dlfferent callee contexts

58



Intuition Behind Simulation (/; U [,)

e Suppose given call-graph is produced from |callH+T" and infer what T" is

E e /;:caller and callee methods have the same context
—_—
" I,={3,5,6}
main |3
~(ea ey
o
[D3]

’ st ) . ’ "7

callH+T === WhatisT"? |
TR '.,'/ : ® 3

£

oy — =
S el 3



Intuition Behind Simulation (/; U [,)

e Suppose given call-graph is produced from |callH+T" and infer what T" is

E e /;:caller and callee methods have the same context
—
g =056
main |3
[*] & _' e /,:different caller ctx imply different callee ctx

foo 12_{3}
[D3] [D3]

i g N R, 2. SeLe O ..", w ';' 2@p 2oa G O cooy -y
’ st )] . ’ ‘,T
callH+T’ === What is T"? |
e '..'/ : ® 3
£

oy — =
S el 3



Intuition Behind Simulation (/; U [,)

e Suppose given call-graph is produced from |callH+T" and infer what T" is

E e /;:caller and callee methods have the same context
—
g =056
main |3
[*] & _' e /,:different caller ctx imply different callee ctx

foo 12_{3}
[D3] [D3]

T =

FET Py .\ o Ve L (3 .,-', ., ,;' QAR L 3 o\-r-«‘ V SOy LoD~ -
\‘r
’ o et [ ] ,
'— d -‘ \\: : . a t I S IC
a . '-" ) : : . . "
4 7

oy — =
S el 3



Intuition Behind Simulation (/; U [,)

e Suppose given call-graph is produced from |callH+T" and infer what T" is

3 idl | 3 id
BB EE
— —
main | |3 [ idl _3> id main | I3 [ idl _3> id
)2 (en )2
\a \a
14 foo 5_’6> i 14 foo 5_’6> id
[D3] [D3] [14] [14]
| objH+T (T = Q&) | callH+T’ (T’ = {3,5,6})

62



Intuition Behind Simulation 1 U1

Exactly the same analyses

EE | EE
main |3 id | _» id — main |3 id | _> id
S e 2 5 A W g 1) e B
\a \a
14 foo 5_’6> i 14 foo 5_’6> id
[D3] [D3] [14] [14]
| objH+T (T = Q) | callH+T’ (T’ = {3,5,6))

63



Intuition Behind Simulation (/; U [,)

idl | 3 id
B @
—_
main I3 |d| |d main | [3 [ idl | 3 | id
BlpEn
14| Of id || J , |
@_’ [D3] | Necessity of /3

| objH+T (T = Q) | callH+T’ (T’ = {3,5,6})

o4



Intuition Behind Simulation (/5)

e /[; :Tunneling should be avoided for improving precision

main |3 id| id
[*] [D2] [D2]
foo 5 6 'd
D3 D3

* [;:given object sensitivity produced only one context

| objH+T (T = &) I, = {56,12,13,14}

65



Intuition Behind Simulation

e The inferred tunneling abstraction T’ is a singleton set {3}

e |
L=356}
— |3 |d| >
] [D2] ( Ul ) I = {3}
W, |
D3 D3 —~— )

| objH+T (T = &) I, = {5,6,12,13,14}

66



Technique |: Simulation

e With T’, CFA becomes more precise than the given object sensitivity

id

I2 &m I2 —’ [12]

main |3 dI |d main I3 |d| |d
* Simulation *
foo .

[5]

\

lobjH+T (T = )

| callH+T (T = (3})

o7



Our Technique : Obj2CFA

e ObJ2CFA consists of simulation and simulation-guided
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_______{Find an expensive but more precise CFA
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Our Technique : Obj2CFA

e ObJ2CFA consists of simulation and simulation-guided

xalan

700

600

| callH+S

| Limitation f
| Simulation is expensive!}

200

100
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Our Technique : Obj2CFA

e ObJ2CFA consists of simulation and simulation-guided

xalan
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| callH+S
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Our Technique : Obj2CFA

e ObJ2CFA consists of simulation and simulation-guided

xalan

700

| callH+S
600} .

500

_ Goal of learning:
) Remove the overhead of simulation

400}
300
200

100

B | callH+SL

O | | | |
5600 580 600 620 /1 640 660 680 700
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Given training programs and simulated tunneling abstractions,
learning aims to find a model that produces similar tunneling
abstractions without running the given object sensitivity
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OOiir Techniniie - OORDYCEA

The learned model will produce tunneling abstractions without |
running object sensitivity \

400

Details in paper

O | | | | | |
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egative results on CFA have been repeatedly reported on Doop |

Setting

Strictly Declarative Specification of Sophisticated Points-to

Martin Bravenboer

Department of Computer Science
University of Massachusetts, Amherst
Ambherst, MA 01003, USA

martin.bravenboer@acm.org

Abstract

‘We present the Doop framework for points-to analysis of
Java programs. Doop builds on the idea of specifying pointer
analysis algorithms declaratively, using Datalog: a logic-
based language for defining (recursive) relations. We carry
the declarative approach further than past work by describ-
ing the full end-to-end analysis in Datalog and optimizing
aggressively using a novel technique specifically targeting
highly recursive Datalog programs.

As aresult, Doop achieves several benefits, including full
order-of-magnitude improvements in runtime. We compare
Door with Lhotak and Hendren’s Pappre, which defines the
state of the art for context-sensitive analyses. For the exact
same logical points-to definitions (and, consequently, identi-
cal precision) Doop is more than 15x faster than PabpLE for
a 1-call-site sensitive analysis of the DaCapo benchmarks,
with lower but still substantial speedups for other important
analyses. Additionally, Doop scales to very precise analyses
that are impossible with PAppLE and Whaley et al.’s bddbddb,
directly addressing open problems in past literature. Finally,

Yannis Smaragdakis

yannis@cs.umass.edu

analyses. It is, thus, not surprising that a

has been devoted to efficient and precis
techniques. Context-sensitive analyses are
class of precise points-to analyses. Contex
approaches qualify the analysis facts with|
tion, which captures a static notion of th
of a method. Typical contexts include abst
call-sites (for a call-site sensitive analys
meaning of “context-sensitive™) or receiy
object-sensitive analysis).

In this work we present Door: a gen|
points-to analysis framework that makes|
precise context-sensitive analyses reporte
Door implements a range of algorithms,
insensitive, call-site sensitive, and object-:
all specified modularly as variations on a c:
Compared to the prior state of the art, D{
speedups of an order-of-magnitude for
analyses.

The main elements of our approach are
alog language for specifying the program|

our implementation is modular and can be easily confi d
to analyses with a wide range of characteristics, largely due
to its declarativeness.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming
Languages—Program  Analysis; D.1.6  [Programming
Techniques]: Logic Programming

General Terms  Algorithms, Languages, Performance

1. Introduction

Points-to (or pointer) analysis intends to answer the question
“what objects can a program variable point to?” This ques-
tion forms the basis for practically all higher-level program

Permission to make digital or hard copics of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post en servers or to redistribute
to lists, requires prior specific permission and/or a fee
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aggressive optimization of the Datalog pr)
Datalog for program analysis (both low-le:
high-level [6,9]) is far from new. Our novd
proach, however, accounts for several orde]
performance improvement: unoptimized

run over 1000 times more slowly. Gener]
tions fit well the approach of handling p
database, by specifically targeting the ind}
the incremental evaluation of Datalog imp)
thermore, our approach is entirely Datalo
declaratively the logic required both for ¢
tion as well as for handling the full seq
of the Java language (e.g., static initializ
reference objects, threads, exceptions, ref]
makes our pointer analysis specifications
but also efficient and easy to tune. Gener:
strong data point in support of declarative
gue that prohibitively much human effort

plementing and optimizing complex mutu
initions at an operational level of abstrac

Pick Your Contexts Well: Understanding O
The Making of a Precise and Scalable Pointer

Yannis Smaragdakis
Department of Computer Science,
University of Massachusetts,
Ambherst, MA 01003, USA
and Department of Informatics,
University of Athens, 15784, Greece
yannis@cs.umass.edu—smaragd@di.uoa.gr

Abstract

Object. itivity has d as an context abstraction
for points-to analysis in object-oriented languages. Despite its prac-
tical success, however, object-sensitivity is poorly understood. For
instance, for a context depth of 2 or higher, past scalable imple-
mentations deviate significantly from the original definition of an
object-sensitive analysis. The reason is that the analysis has many
degrees of freedom, relating to which context elements are picked
at every method call and object creation. We offer a clean model
for the analysis design space, and discuss a formal and informal un-
derstanding of object-sensitivity and of how to create good object-
sensitive analyses. The results are surprising in their extent. We
find that past implementations have made a sub-optimal choice of
contexts, to the severe detriment of precision and performance. We
define a “full-object-sensitive” analysis that results in significantly
higher precision, and often performance, for the exact same con-
text depth. We also introduce “type-sensitivity” as an explicit ap-
proximation of object-sensitivity that preserves high context qual-
ity at substantially reduced cost. A type-sensitive points-to analysis
makes an unconventional use of types as context: the context types
are not dynamic types of objects involved in the analysis, but in-
stead upper bounds on the dynamic types of their allocator objects.
Our results expose the influence of context choice on the quality
of points-to analysis and demonstrate type-sensitivity to be an idea
with major impact: It decisively advances the state-of-the-art with
a spectrum of analyses that simultaneously enjoy speed (several
times faster than an analogous object-sensitive analysis), scalabil-
ity (comparable to analyses with much less context-sensitivity), and

isi ble to the best object: itive analysis with the
same context depth).

Categories and Subject Descriptors  F.3.2 [Logics and M

Martin Bravenboer

LogicBlox Inc.
Two Midtown Plaza
Atlanta, GA 30309, USA

martin.bravenboer@acm.org

1. Introduction

Points-to analysis (or poi
most fundamental static pi
sists of computing a static
expression (or just a varial
to during program run-tim
cally every other program
mechanisms such as call-
pointer determine the targ
object-oriented dynamicall
lambda applications. By
analysis is to pick judicioul
hind any attempt to track
Furthermore, the global
analysis make it hard to ddf
interact with various lang
functional languages, con
achieves tractable and use}
consists of qualifying local
object abstractions, with ¢
information (e.g., “what
to”) over all possible exe
while separating all infory]
kinds of context-sensitivity
[18, 19] and object-sensiti|
Ever since the introdug]
al. [13], there has been ac
it is a superior context al
yielding high precision r
sensitivity has been such
analyses have almost corf

of Programs]: Semantics of Programming Languages—Program
Analysis

; D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics

General Terms  Algorithms, Languages, Performance
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/kCFA analyses fd
is concerned with unders|
malizing it conveniently, af
even more scalable and pry

What is object-sensiti)
est way to describe the c
better-known call-site sen:
sis uses method call-sites
the method) as context ele]
separates information on
per call-stack (i.e., sequen
that led to the current met}
information on heap objed
that led to the object’s allof
below, a 1-call-site sensitj
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Hybrid Context-Sensitivity for Points-To A}

George Kastrinis

Department of Informatics
University of Athens
{gkastrinis,smaragd }@di.uoa.gr

Abstract

Context-sensitive points-to analysis is valuable for achieving high
precision with good performance. The standard flavors of context-
sensitivity are call-site-sensitivity (kCFA) and object-sensitivity.
Combining both flavors of context-sensitivity increases precision
but at an infeasibly high cost. We show that a selective combi-
nation of call-site- and object-sensitivity for Java points-to anal-
ysis is highly profitable. Namely, by keeping a combined context
only when analyzing selected language features, we can closely
approximate the precision of an analysis that keeps both contexts
at all times. In terms of speed, the selective combination of both
kinds of context not only vastly outperforms non-selective combi-
nations but is also faster than a mere object-sensitive analysis. This
result holds for a large array of analyses (e.g., 1-object-sensitive,
2-object: itive with a context itive heap, type-sensitive) es-
tablishing a new set of performance/precision sweet spots.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs): Semantics of Programming Languages—Program
Analysis; D.34 [Prog ing Lang :  Pn
Compilers

General Terms  Algorithms, Languages, Performance

Keywords points-to  analysis;
sensitivity; type-sensitivity

context-sensitivity;  object-

1. Introduction

Points-to analysis is a static program analysis that consists of com-
puting all objects (typically identified by allocation site) that a pro-
gram variable may point to. The area of points-to analysis (and
its close relative, alias analysis) has been the focus of intense re-
search and is among the most standardized and well-understood of
inter-procedural analyses. The emphasis of points-to analysis algo-
rithms is on combining fairly precise modeling of pointer behavior
with scalability. The challenge is to pick judicious approximations
that will allow satisfactory precision at a reasonable cost. Further-
more, although increasing precision often leads to higher asymp-
totic complexity, this worst-case behavior is rarely encountered in
actual practice. Instead, techniques that are effective al maintaining
good precision often also exhibit better average-case performance,
since smaller points-to sets lead to less work.
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One of the major tools for expls
cision/performance tradeoff has bee:
sensitivity consists of qualifying log
context information: the analysis uni
same context value, while separating|
ent contexts. This approach tries to cq
naturally results in any static analysi
from different dynamic program path
sensitivity have been explored in the|
[22, 23] and object-sensitivity [18, 1

A call-site-sensitive/kCFA analy
labels of instructions that may call thd
That is, the analysis separates inforn)
method arguments) per call-stack (1.
method invocations that led to the ¢
the analysis separates information ony
method invocations that led to the ob)
in the code example below, a 1-calld
a context-insensitive analysis) will dff
method fee on lines 7 and 9. This mg
foo separately for two cases: that of i
to anything obj! may point to, and
obj2 may point to.

class € {
void foo(Object o) { ... }
}

class Client {
void bar(C el, C c2) { ...
el.foa(obj1);

;é:foo(obj 2);
¥
}

In contrast, object-sensitivity uses ob;
of instructions containing a new stay
(Hence, a better name for “object-
“allocation-site sensitivity™.) That is
an object, the analysis separates thd
the allocation site of the receiver ob)
the method is called), as well as

context. Thus, in the above example]
will analyze foo Ty d di

Introspective Analysis: Context-Sensitivity, Across tk
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Abstract

Context-sensitivity is the primary approach for adding more preci-
sion 1o a points-to analysis, while hopefully also maintaining scal-
ability. An oft-reported problem with context-sensitive analyses,
however, is that they are bi-modal: either the analysis is precise
enough that it manipulates only manageable sets of data, and thus
scales impressively well, or the analysis gets quickly derailed at the
first sign of imprecision and becomes orders-of-magnitude more
expensive than would be expected given the program’s size. There
is currently no approach that makes precise context-sensitive analy-
ses (of any flavor: call-site-, object-, or type-sensitive) scale across
the board at a level comparable to that of a context-insensitive anal-
ysis. To address this issue, we propose introspective analysis: a
technigue for uniformly scaling context-sensitive analysis by elim-
inating its performance-detrimental behavior, at a small precision
expense. Introspective analysis consists of a common adaptivity
pattern: first perform a context-insensitive analysis, then use the
results to selectively refine (i.e., analyze context-sensitively) pro-
gram elements that will not cause explosion in the running time
or space. The technical challenge is to appropriately identify such
program elements. We show that a simple but principled approach
can be remarkably effective, achieving scalability (often with dra-
matic speedup) for benchmarks previously completely out-of-reach
for deep context-sensitive analyses.

Categories and Subject Descriptors  F3.2 [Logics and Meanings
of Prog 1: 8 ics of Programming Lz s—Program
Analysis; D34 [Programming Languages]: Processors—
Compilers

General Terms  Algorithms, Languages, Performance
Keywords points-to  analysis; object-
sensitivity; type-sensitivity

context-sensitivity;

1. Introduction

Points-to analysis is probably the most common whole-program
static analysis, and often serves as a substrate for a variety of high-
level program analysis tasks. Points-to analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
may point to during runtime. The promise, as well as the challenge,
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of points-to analysis is to yield usefully precif
sacrificing scalability: the analysis inputs arg
algorithms are typically quadratic or cubi
near-linear behavior in practice, by exploiti
and maintaining precision. Indeed precision
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algorithms are often found to be both mo
because smaller points-to sets lead to less w
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ables and objects with context information:
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way, context-sensitivity attempts to avoid pre
ing the behavior of different dynamic pro
sensitivity comes in many flavors, depending
information, such as call-site-sensitivity [22.
[19, 20], and type-sensitivity [24].

An oft-remarked fact about context-sens)
even the best algorithms have a common fa
cannot maintain precision. Past literature re}
mance of a [...] deep-context analysis is biy
sensitive analyses have been associated with|
contexts” [15]; “algorithms completely hit
ations, with the number of tuples explodin
Recent published results [12] fail to run a 2
sis in under 90mins for 2 of 10 DaCapo ben
benchmarks take more than 1,000sec, althot
marks of similar or larger size get analyzed §

Thus, when context-sensitivity works, i
terms of both precision and performance.
it fails miserably, quickly exploding in co
context-insensitive analyses uniformly scale|
puts. Figure 1 vividly demonstrates this ph
Capo benchmarks, analyzed with the Doop
context-insensitive (insens) analysis and a 2)
ysis with a context-sensitive heap (2objH). (
analysis time of the longest-running benchf
hsqldb and jython, timed out after 90mins
and would not terminate even for much lon
be seen, context-insensitive analyses vary
formance, while context-sensitivity often ca
memory use) to explode.

Faced with this unpredictability of cont
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well-behaved programs. Even worse, for
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try [4] and academic researchers [3] alike]

) . . ) Data-Driven Context-Sensitivity for Points-to Analysis |
Making k-Object-Sensitive Pointer Analys| 8

More Precise with Still k-Limit ing SEHUN JEONG, Korea University, Republic of Korea
MINSEOK JEON®, Korea University, Republic of Korea “
SUNGDEOK CHA, Korea University, Republic of Korea Y

Tian Tan', Yue Li', and Jingling Xue'* HAKJOO OHT, Korea University, Republic of Korea

! School of Computer Science and Engineering, UNSW Australia g
? Advanced Innovation Center for Imaging Technology, CNU, China | We present a new data-driven approach to achieve highly cost-effective context-sensitive points-to analysis K
for Java. While context-sensitivity has greater impact on the analysis precision and performance than any
other precision-improving techniques, it is difficult to accurately identify the methods that would benefit the y
most from context-sensitivity and decide how much context-sensitivity should be used for them. Manually 14
designing such rules is a nontrivial and laborious task that often delivers suboptimal results in practice. To
overcome these challenges, we propose an automated and data-driven approach that learns to effectively apply X
context-sensitivity from codebases. In our approach, points-to analysis is equipped with a parameterized and
heuristic rules, in disjunctive form of properties on program elements, that decide when and how much to apply |
context-sensitivity. We present a greedy algorithm that efficiently learns the parameter of the heuristic rules. ‘
We implemented our approach in the Doop framework and evaluated using three types of context-sensitive \
analyses: conventional object-sensitivity, selective hybrid object-sensitivity, and type-sensitivity. In all cases, 4
experimental results show that our approach significantly outperforms existing techniques. \

Abstract. Object-sensitivity is regarded as arguably the best context
abstraction for pointer analysis in object-oriented languages. However, 3
k-object-sensitive pointer analysis, which uses a sequence of k allocation]
sites (as k context elements) to represent a calling context of a method|
call, may end up using some context elements redundantly without in-
ducing a finer partition of the space of (concrete) calling contexts for the
method call. In this paper, we introduce BEAN, a general approach forf
improving the precision of any k-object-sensitive analysis, denoted k-obj,
by still using a k-limiting context abstraction. The novelty is to identify|
allocation sites that are redundant context elements in k-obj from an|
Object Allocation Graph (OAG), which is built based on a pre-analysis|
(e.g., a context-insensitive Andersen’s analysis) performed initially on a
program and then avoid them in the subsequent k-object-sensitive anal-
ysis for the program. BEAN is generally more precise than k-obj, with g
precision that is guaranteed to be as good as k-obj in the worst case. Wl
have implemented BEAN as an open-source tool and applied it to refine)
two state-of-the-art whole-program pointer analyses in Doop. For twol
representative clients (may-alias and may-fail-cast) evaluated on a set off
nine large Java programs from the DaCapo benchmark suite, BEAN has|
succeeded in making both analyses more precise for all these benchmarks] 1 INTRODUCTION K
under each client at only small increases in analysis cost.
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chine learning approaches; ]
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Points-to analysis is one of the most important static program analyses. It approximates various 1y
memory locations that a pointer variable may point to at runtime. While useful as a stand-alone tool J
for many program verification tasks (e.g., detecting null-pointer dereferences), it is a key ingredient ;
of subsequent higher-level program analyses such as static bug-finders, security auditing tools, and
program understanding tools. [

For object-oriented languages, context-sensitive points-to analysis is important as it must distin-
guish method’s local variables and objects in different calling-contexts. For languages like Java,

1 Introduction

Pointer analysis, as an enabling technology, plays a key role in a wide r§
client applications, including bug detection [3, 25, 35, 34], security analysis
compiler optimisation [6,33], and program understanding [12]. Two ma|
mensions of pointer analysis precision are flow-sensitivity and context-sens| *The first and second authors contributed equally to this work \
For C/C++ programs, flow-sensitivity is needed by many clients [11, 16,
For Dbjmt_orientEd PLOErams, €.g., Java programs, however, context-sens Authors’ email addresses: S. Jeong, gifaranga@korea.ac.kr; M. Jeon, minseok_jeon@korea.ackr; 5. Cha, scha@korea.ac.kr; y y
is known to deliver trackable and useful precision [17,19-21,28-30], in gd
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Making Pointer Analysis More Precise by Unleashing the
Power of Selective Context Sensitivity

TIAN TAM, Nanjing University, China

YUE LI', Nanjing University, China

XIAOXING MA, Nanjing University, China

CHANG XU, Nanjing University, China

YANNIS SMARAGDAKIS, University of Athens, Greece

Traditional context itive pointer analysis is hard to scale for large and complex Java programs. To address
this issue, a series of selective context-sensitivity approaches have been proposed and exhibit promising results.
In this work, we move one step further towards producing highly-precise pointer analyses for hard-to-analyze
Java programs by presenting the Unity-Relay framework, which takes selective context sensitivity to the next
level. Briefly, Unity-Relay is a one-two punch: given a set of different selective context-sensitivity approaches,
say 5§ =51,..., Sa, Unity-Relay first provides a mechanism (called Unity) to combine and maximize the
precision of all components of 5, When Unity fails to scale, Unity-Relay offers a scheme (called Relay) to
pass and late the precisi from one h S in 8 to the next, S;,,, leading to an analysis that is
maore precise than all approaches in 5.

As a proof-of-concept, we instantiate Unity-Relay into a tool called Baton and extensively evaluate it on
a set of hard-to-analyze Java programs, using general precision metrics and popular clients. Compared with
the state of the art, BATON achieves the best precision for all metrics and clients for all evaluated programs.
The difference in precision is often dramatic—up to 71% of alias pairs reported by previously-best algorithms
are found to be spurious and eliminated.
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1 INTRODUCTION

Pointer analysis is important for an array of real-world applications such as bug detection [Chandra
et al. 2009; Naik et al. 2006], security analysis [Arzt et al. 2014; Livshits and Lam 2005], program
verification [Fink et al. 2008; Pradel et al. 2012] and program understanding [Li et al. 2016; Sridharan
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Precision-Preserving Yet Fast Object-Sensitive Pointer
Analysis with Partial Context Sensitivity

JINGBO LU, UNSW Sydney, Australia
JINGLING XUE, UNSW Sydney, Australia

Object-sensitivity is widely used as a context abstraction for computing the points-to information context-
sensitively for object-oriented languages like Java. Due to the combinatorial explosion of contexts in large
programs, k-object-sensitive pointer analysis (under k-limiting), denoted k-ob, is scalable only for small
values of k, where k € 2 typically. A few recent solutions attempt to improve its efficiency by instructing
k-obj to analyze only some methods in the program context ively, d 1} lly by a pre-
analysis. While already effective, these heuristics-based pre-analyses do not provide precision guarantees, and
consequently, are limited in the efficiency gains achieved. We introduce a radically different approach, Eacte,
that makes k-obj run significantly faster than the prior art while maintaining its precision. The novelty of
EAGLE is to enable k-obj to analyze a method with partial context ivity, i.e., context ly for only
same of its selected variables/allocation sites. EacLe makes these s during a ligh ight lysis

by ing about context-free-1 (CFL) reachability at the level of variables/objects in the program,
based on a new CFL-reachability formulation of k-obj. We demonstrate the advances made by Eacue by
comparing it with the prior art in terms of a set of popular Java benchmarks and applications.

€5 Concepts: » Theory of computation — Program analysis.
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1 INTRODUCTION
For object-oriented languages such as Java, context-sensitivity is known to provide highly useful
precision for pointer analysis [Lhotik and Hendren 2008; Smaragdakis et al. 2011]. A context-
insensitive pointer analysis, such as Andersen’s analysis [Andersen 1994], analyzes a method only
once, producing one points-to set for every variable and one abstract object for modeling every
allocation site in the method. In contrast, its context it I lyzes a method
multiple times under different calling contexts that abstract its different run-time invocations,
thereby producing multiple points-to sets for every variable (with one per context) and multiple
abstract objects for modeling every allocation site (with one per context) in the method.
To tame the combinatorial explosion of calling contexts, a context is usually represented by a
sequence of k context elements, under k-limiting. There are two representative abstractions for
bject-ori d (1) k-callsin ivity [Shivers 1991], which distinguishes the contexts

of a method by its k-most-recent callsites, and (2) k-object-sensitivity [Milanova et al. 2005], which
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Summary

 Currently, CFA is known as a bad context

* However, if context tunneling is included,
CFA is not a bad context anymore

e VWe need to reconsider CFA from now on

Thank you
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... call-site-sensitivity is less important than others ...
eon et al. [2019]
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] Return of CFA: Call-Site Sensitivity Can Be Superior to I
Object Sensitivity Even for Object-Oriented Programs

'. MINSEOK JEON and HAKJOO OH", Korea University, Republic of Karea

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision.
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been
constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity
is generally a superior context abstraction because it is practically possible to transform object sensitivity into
more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity
holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context
elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling.
With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context
strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa.
g To support the claim, we present a technique, called Opj2Cra, for transforming arbitrary context-tunneled
object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented Onj2Cra in Doop
and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis.
Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision
& and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can F
be more precise than the conventional 3-object-sensitive analysis.

1 INTRODUCTION

“Since its introduction, object sensitivity has emerged as the dominant flavor of context
sensitivity for object-oriented languages.”

i —Smaragdakis and Balatsouras [2015]
¥ Context sensitivity is critically important for static program analysis of object-oriented programs.
A context-sensitive analysis associates local variables and heap objects with context information
of method calls, computing analysis results separately for different contexts. This way, context
sensitivity prevents analysis information from being merged along different call chains. For object-
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sensitive analysis [Milanova et al 2002, 2005; Smaragdakis et al 2011] maintains a sequence of
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