
Return of CFA: Call-Site Sensitivity Can
Be Superior to Object Sensitivity Even for

Object-Oriented Programs

Minseok Jeon and Hakjoo Oh

1

SW재난연구센터 workshop @ Jeju, Korea

Return of CFA: Call-Site Sensitivity Can
Be Superior to Object Sensitivity Even for

Object-Oriented Programs

Minseok Jeon and Hakjoo Oh

Two major camps

20 year old story between them

2

SW재난연구센터 workshop @ Jeju, Korea

Call-site Sensitivity vs Object Sensitivity

Call-site sensitivity was born in 1981

foo(){
 goo();
 goo();
}

0:
1:
2:
3:

Call graph

• Considers “Where”

1981 20222002 2010

foo

goo
[1]

goo
[2]

Context

Context

Call-site sensitivity

3

Call-site sensitivity was born in 1981

foo(){
 goo();
 goo();
}

0:
1:
2:
3:

Call graph

• Considers “Where”

1981 20222002 2010

foo

goo
[1]

goo
[2] Call-site is context

Call-site is context

Call-site sensitivity

Where is it called from?

Call-site Sensitivity vs Object Sensitivity

4

1981 20222002 2010

Object sensitivity appeared in 2002

foo(p){
 p.goo();
}

0:
1:
2:

O1 or O2

foo

Call graph

goo
[O1]

goo
[O2]

Object sensitivity

Context

Context

Call-site Sensitivity vs Object Sensitivity

5

• Considers “What”

1981 20222010

Object sensitivity appeared in 2002

• Considers “What”

foo(p){
 p.goo();
}

0:
1:
2:

O1 or O2

foo

Call graph

goo
[O1]

goo
[O2]

Object sensitivity
Object is context

Object is context

What is it called with?

Call-site Sensitivity vs Object Sensitivity

2002
6

Call-site Sensitivity vs Object Sensitivity

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

Call-graph of 1-CFA

main
[*]

id1
[9]

id1
[10]

id
[4]

9

10

4

4

• An example shows the limitation of CFA and strength of object sensitivity

class C{
 id(v){
 return v;}
 id1(v){
 return this.id(v);}
}

7

Call-site Sensitivity vs Object Sensitivity

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

Call-graph of 1-CFA

main
[*]

id1
[9]

id1
[10]

id
[4]

9

10

4

4

• An example shows the limitation of CFA and strength of object sensitivity

class C{
 id(v){
 return v;}
 id1(v){
 return this.id(v);}
}

8

Identity function

Call-site Sensitivity vs Object Sensitivity

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

Call-graph of 1-CFA

main
[*]

id1
[9]

id1
[10]

id
[4]

9

10

4

4

• An example shows the limitation of CFA and strength of object sensitivity

class C{
 id(v){
 return v;}
 id1(v){
 return this.id(v);}
}

9

Also an identity function implemented with id

Call-site Sensitivity vs Object Sensitivity

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

Call-graph of 1-CFA

main
[*]

id1
[9]

id1
[10]

id
[4]

9

10

4

4

• An example shows the limitation of CFA and strength of object sensitivity

class C{
 id(v){
 return v;}
 id1(v){
 return this.id(v);}
}

10

Method & Context

Call-site

Call-site Sensitivity vs Object Sensitivity

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

main
[*]

id1
[9]

id1
[10]

id
[4]

9

10

4

4

class C{
 id(v){
 return v;}
 id1(v){
 return this.id(v);}
}

Limitation of CFA :
Nested method calls

• An example shows the limitation of CFA and strength of object sensitivity

11

Call-graph of 1-CFA

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){
 return v;}
 id1(v){
 return this.id(v);}
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

main
[*]

id1
[C1]

id1
[C2]

id
[C1]9

10

4

4
id

[C2]
main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

• An example shows the limitation of CFA and strength of object sensitivity

12

Call-graph of 1-Obj

Call-site Sensitivity vs Object Sensitivity

main
[*]

id1
[C1]

id1
[C2]

id
[C1]9

10

4

4
id

[C2]
main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

class C{
 id(v){
 return v;}
 id1(v){
 return this.id(v);}
}

C1 or C2

• An example shows the limitation of CFA and strength of object sensitivity

13

Call-graph of 1-Obj

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){
 return v;}
}
main(){
 c1 = new C();//C1
 a = (A) c1.id(new A());//query1
 b = (B) c1.id(new B());//query2
 c = (B) c1.id(new C());//query3
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

6,7,8main
[*]

id
[C1]

• An example shows the limitation of object sensitivity and strength of CFA

14

Call-graph of 1-Obj

main(){
 c1 = new C();//C1
 a = (A) c1.id(new A());//query1
 b = (B) c1.id(new B());//query2
 c = (B) c1.id(new C());//query3
}

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){
 return v;}
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

6,7,8main
[*]

id
[C1]

• An example shows the limitation of object sensitivity and strength of CFA

The three method calls share the same receiver object C1
15

Call-graph of 1-Obj

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){
 return v;}
} main

[*]

id
[6]

id
[8]

6

8

id
[7]

7

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

main(){
 c1 = new C();() //C1
 a = (A) c1.id(new A());//query1
 b = (B) c1.id(new B());//query2
 c = (C) c1.id(new C());//query3
}

• An example shows the limitation of object sensitivity and strength of CFA

16

Call-graph of 1-CFA
Call-site sensitivity easily separates the three method calls

Call-site Sensitivity vs Object Sensitivity

…

1981 20222002 2010

VSObj CFA

Call-site Sensitivity vs Object Sensitivity
• Call-site Sensitivity and Object Sensitivity had been actively compared

17

Call-site Sensitivity vs Object Sensitivity

…

1981 20222002 2010

Obj CFAObj wins Obj wins Obj wins Obj wins

Call-site Sensitivity vs Object Sensitivity
• Object Sensitivity outperformed call-site sensitivity

18

1981 20222002 2010

Obj

Call-site Sensitivity vs Object Sensitivity

…

19

• Lectures have taught the superiority of object sensitivity

1981 20222002 2010

Obj

Call-site Sensitivity vs Object Sensitivity

…

20

I was also taught like that

• Lectures have taught the superiority of object sensitivity

Researches on Object Sensitivity

1981 20222002 2010

Obj

Call-site Sensitivity vs Object Sensitivity

…

• Researches focused on improving Object Sensitivity

21

1981 20222002 2010

“We do not consider call-site sensitive analyses …”
- Li et al. [2018]

CFA

Call-site Sensitivity vs Object Sensitivity
• Call-site Sensitivity has been ignored

22

1981 20222002 2010

“We have included 2cs+h to demonstrate the superiority
of object sensitivity over call-site sensitivity”

- Tan et al. [2016]

CFA

Call-site Sensitivity vs Object Sensitivity
• Call-site Sensitivity has been ignored

23

1981 20222002 2010

“… we do not discuss our approach for call-site sensitivity”
- Jeon et al. [2019]

CFA

Call-site Sensitivity vs Object Sensitivity
• Call-site Sensitivity has been ignored

24

1981 20222002 2010

“… we do not discuss our approach for call-site sensitivity”
- Jeon et al. [2019]

CFA

Call-site Sensitivity vs Object Sensitivity
• Call-site Sensitivity has been ignored

25

I also strongly dismissed call-site sensitivity

1981 20222002 2010

Call-site Sensitivity vs Object Sensitivity

Currently, call-site sensitivity is known as a bad context

26

1981 20222002 2010 2018

A technique context tunneling is proposed

Context tunneling can improve both
call-site sensitivity and object sensitivity

Jeon et al. [2018]

Call-site Sensitivity vs Object Sensitivity

27

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){
 return v;}
 id1(v){
 return id0(v);}
}
main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

1-CFA with context tunneling
(T= {4})

main
[*]

id1
[9]

id1
[10]

id
[9]9

10

4

4

• Context tunneling can remove the limitation of call-site sensitivity

id
[10]

28

1-CFA with context tunneling
(T= {4})

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id(new A());//query1
b = (B) c2.id(new B());//query2
}

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){

return v;}
 id1(v){

return id0(v);}
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

main
[*]

id1
[9]

id1
[10]

id
[9]9

10

4

4

• Context tunneling can remove the limitation of call-site sensitivity

id
[10]

Tunneling abstraction:
Determines where to apply context tunneling

29

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){

return v;}
 id1(v){

return id0(v);}
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

main
[*]

id1
[9]

id1
[10]

id
[9]9

10

4

4

id
[10]

main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

30

• Context tunneling can remove the limitation of call-site sensitivity

1-CFA with context tunneling
(T= {4})

Unimportant call-sites that should not be used as context elements

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){

return v;}
 id1(v){

return id0(v);}
}
main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

main
[*]

id1
[9]

id1
[10]

id
[9]9

10 id
[10]

4

4

Apply context tunneling:
Inherit caller method’s context

31

• Context tunneling can remove the limitation of call-site sensitivity

1-CFA with context tunneling
(T= {4})

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){

return v;}
 id1(v){

return id0(v);}
}
main(){
c1 = new C();//C1
c2 = new C();//C2
a = (A) c1.id1(new A());//query1
b = (B) c2.id1(new B());//query2
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

main
[*]

id1
[9]

id1
[10]

id
[9]9

10

4

4

• Context tunneling can remove the limitation of call-site sensitivity

id
[10]

32

1-CFA with context tunneling
(T= {4})

With tunneling, 1-CFA separates the nested method calls

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){
 return v;}
}
main(){
 c1 = new C();//C1
 a = (A) c1.id(new A());
 b = (B) c1.id(new B());
 c = (C) c1.id(new C());
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

• Object sensitivity still suffers from its limitation

{6,7,8} - T
main
[*]

id
[C1]

id
[*]T

1-Obj + Tunneling
(T = ?)

33

Call-graph of 1-Obj with
tunneling T

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){
 return v;}
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

• Object sensitivity still suffers from its limitation

{6,7,8} - T
main
[*]

id
[C1]

id
[*]T

1-Obj + Tunneling
(T = ?)

Unable to separate the
three method calls with the

two contexts

Unable to separate the
three method calls with the

two contexts

34

main(){
 c1 = new C();//C1
 a = (A) c1.id(new A());
 b = (B) c1.id(new B());
 c = (C) c1.id(new C());
}

Call-site Sensitivity vs Object Sensitivity

class C{
 id(v){
 return v;}
}
main(){
 c1 = new C();//C1
 a = (A) c1.id(new A());
 b = (B) c1.id(new B());
 c = (C) c1.id(new C());
}

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

1-CFA

main
[*]

id
[6]

id
[8]

id
[7]

6

7

8

{6,7,8} - T
main
[*]

id
[C1]

id
[*]T

1-Obj + Tunneling
(T = ?)

• Object sensitivity still suffers from its limitation

35

Call-site sensitivity easily separates the three method calls

• Object sensitivity still suffers from its limitation

Call-site Sensitivity vs Object Sensitivity

class C{
 id0(v){
 return v;}
}
main(){
 c1 = new C();//C1
 a = (A) c1.id(new A());
 b = (B) c1.id(new B());
 c = (B) c1.id(new C());
}

6,7,8 - T

main
[*]

Id0
[C1]

Id0
[*]

T

Observation
0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

When context tunneling is included

• Limitation of call-site sensitivity is removed

• Limitation of object sensitivity is not removed

36

37

• Object sensitivity still suffers from its limitation

Call-site Sensitivity vs Object Sensitivity

c

}
m

 a =
 b = (B) c1.id(new B());
 c = (B) c1.id(new C());
}

Call-graph of 1-object sensitivity with tunneling
T = ?

C ll h f 1 bj i i i ii ll h f 1 bj i i i i hB(C ll h f 1 bj i i i i hh f 1 bj i i i i h(l h f 1 bj i i i i hB())(B) h f 1 bj i i i i hC llB1 id(ll h f 1 bj i i i i hB) 1 id(ll h f 1 bj i i i i hh f 1 bj i i i i h) ll h f 1 bj i i i i hB(B h f 1 bj i i i
a =

(B l h f 1 bj i i i i hB(h f 1 b(

m

c

bjecectec mitationm its listill suffers fromivitysensit mitastill suffers fromect sensitct sensitivity ers frs tct sensitivi mitatstill suffers fromi tationuffers frosensitivityt mitatstill suffers fromct sensitiv mitatstill suffers fromv imitationuffers frosensitivity mitatstill suffers fromi osuffers from itse
Observation

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

When context tunneling is included

• Limitation of call-site sensitivity is removed

• Limitation of object sensitivity is not removed

Our claim
If context tunneling is included,

call-site sensitivity is more precise than object sensitivity

500 550 600 650 700 750 800
0

500

1000

1500

2000

2500

Our Technique : Obj2CFA
• Obj2CFA transforms a given object sensitivity into a more precise CFA

#alarms

an
al

ys
is

 t
im

e
(s

)

Precise

S
ca

la
b

le

1objH+T
1callH+SL

(ours)

2objH

Obj2CFA

xalan

38

500 550 600 650 700 750 800
0

500

1000

1500

2000

2500

an
al

ys
is

 t
im

e
(s

)

Precise

S
ca

la
b

le

1objH+T
1callH+SL

(ours)
Obj2CFA

xalan

2objH

1objH+T is even more
precise than 2objH

Our Technique : Obj2CFA

39

#alarms

Given state-of-the art 1-object
sensitivity with tunneling

• Obj2CFA transforms a given object sensitivity into a more precise CFA

500 550 600 650 700 750 800
0

500

1000

1500

2000

2500

an
al

ys
is

 t
im

e
(s

)

Precise

S
ca

la
b

le

1objH+T
1callH+SL

(ours)

2objH

Obj2CFA

xalan

Transformed call-site sensitivity via Obj2CFA

Our Technique : Obj2CFA

40

#alarms

• Obj2CFA transforms a given object sensitivity into a more precise CFA

500 550 600 650 700 750 800
0

500

1000

1500

2000

2500

an
al

ys
is

 t
im

e
(s

)

Precise

S
ca

la
b

le

2objH

xalan

1objH+T
1callH+SL

(ours)

1callH+SL is far more precise than 1objH+T

Our Technique : Obj2CFA

41

#alarms

• Obj2CFA transforms a given object sensitivity into a more precise CFA

500 550 600 650 700 750 800
0

500

1000

1500

2000

2500

#alarms

an
al

ys
is

 t
im

e
(s

)

Precise

S
ca

la
b

le

2objH

xalan

1objH+T

1callH+SL is more scalable than 1objH+T

Our Technique : Obj2CFA

1callH+SL
(ours)

42

• Obj2CFA transforms a given object sensitivity into a more precise CFA

Detail of Obj2CFA

43

560 580 600 620 640 660 680 700
0

100

200

300

400

500

600

700

xalan

1objH+T

1callH+S

1callH+SL

Obj2CFA

Precise

S
ca

la
b

le

• Obj2CFA consists of simulation and simulation-guided learning

1callH+S
Simulation

L
e

ar
n

in
g

Our Technique : Obj2CFA

44

560 580 600 620 640 660 680 700
0

100

200

300

400

500

600

700

1objH+T

1callH+S

1callH+SL

Obj2CFA

Precise

S
ca

la
b

le

• Obj2CFA consists of simulation and simulation-guided learning

1callH+S
Simulation

L
e

ar
n

in
g

Our Technique : Obj2CFA

Find an expensive but more precise CFA

45

560 580 600 620 640 660 680 700
0

100

200

300

400

500

600

700

1objH+T

1callH+S

1callH+SL

Obj2CFA

Precise

S
ca

la
b

le

• Obj2CFA consists of simulation and simulation-guided learning

1callH+S
Simulation

L
e

ar
n

in
g

Our Technique : Obj2CFA

Improve scalability

xalan

46

Technique 1: Simulation
class C{
 id(v){return v;}
 id1(v){return id(v);}
 foo(){
 A a = (A) this.id(new A());}//query1
 B b = (B) this.id(new B());}//query2
}
main(){
 c1 = new C(); //C1
 c2 = new C(); //C2
 c3 = new C(); //C3
 A a = (A) c1.id1(new A());//query3
 B b = (B) c2.id1(new B());//query4
 c3.foo();
}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15: 47

• Running example to illustrate Simulation

Technique 1: Simulation
class C{
 id(v){return v;}
 id1(v){return id(v);}
 foo(){
 A a = (A) this.id(new A());}//query1
 B b = (B) this.id(new B());}//query2
}
main(){
 c1 = new C(); //C1
 c2 = new C(); //C2
 c3 = new C(); //C3
 A a = (A) c1.id1(new A());//query3
 B b = (B) c2.id1(new B());//query4
 c3.foo();
}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

Limitation of conventional 1-CFA

id1
[12]

id1
[13]

id
[3]

3

3

48

main
[*]

12

13

• Running example to illustrate Simulation

Technique 1: Simulation
class C{
 id(v){return v;}
 id1(v){return id(v);}
 foo(){
 A a = (A) this.id(new A());}//query1
 B b = (B) this.id(new B());}//query2
}
main(){
 c1 = new C(); //C1
 c2 = new C(); //C2
 c3 = new C(); //C3
 A a = (A) c1.id1(new A());//query3
 B b = (B) c2.id1(new B());//query4
 c3.foo();
}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

• Running example to illustrate Simulation

Limitation of object sensitivity

id
[C3]

foo
[C3]

5,6

49

Technique 1: Simulation
• Given object sensitivity is conventional 1-object sensitivity (e.g., T =)∅

class C{
 id(v){return v;}
 id1(v){return id(v);}
 foo(){
 A a = (A) this.id(new A());}//query1
 B b = (B) this.id(new B());}//query2
}
main(){
 c1 = new C(); //C1
 c2 = new C(); //C2
 c3 = new C(); //C3
 A a = (A) c1.id1(new A());//query3
 B b = (B) c2.id1(new B());//query4
 c3.foo();
}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

1objH+T (T =)∅

id1
[D1]

id1
[D2]

id
[D1]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

50

Technique 1: Simulation

1objH+T (T =)∅

id1
[D1]

id1
[D2]

id
[D1]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

Simulation T’ = {3}

Tunneling abstraction for 1-CFA

• Simulation takes a call-graph and produce a tunneling abstraction for CFA

51

Technique 1: Simulation

1objH+T (T =)∅

id1
[D1]

id1
[D2]

id
[D1]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

Simulation T’ = {3}

T’ = (I1 ∪ I2)∖I3

52

• Simulation takes a call-graph and produce a tunneling abstraction for CFA

Technique 1: Simulation

1objH+T (T =)∅

id1
[D1]

id1
[D2]

id
[D1]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

Simulation

T’ = (I1 ∪ I2)

T’ = {3}

∖∖I3II

53

Need tunneling to simulate the given object sensitivity

• Simulation takes a call-graph and produce a tunneling abstraction for CFA

Technique 1: Simulation

1objH+T (T =)∅

id1
[D1]

id1
[D2]

id
[D1]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

Simulation T’ = {3}

T’ = (I1II ∪ I2II)∖I3

54

Tunneling should be avoided for improving precision

• Simulation takes a call-graph and produce a tunneling abstraction for CFA

1objH+T (T =)∅

id1
[D1]

id1
[D2]

id
[D1]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

1callH+T’ What is T’?
55

Intuition of Simulation

Technique 1: Simulation

Suppose the call-graph is produced from
1-CFA + T’ and infer the T’

• Simulation takes a call-graph and produce a tunneling abstraction for CFA

• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

1objH+T (T = 1objH+T (T =)∅

id1
[D1]

id1
[D2]

id1
[D1]

main
[*]

id1
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

144

H+ ∅+T (T1objH+T (T =)∅bjH+T (T ∅objH+T (T ∅T (T ∅TobjH+T (T ∅T)+H+T (TobjH+T (T ∅T (T)T ∅objH+ ∅T (T ∅H+T (T ∅objH+T ∅objH+)objH+T (T ∅1objH+T (T)H+T (T ∅objH+T (∅T (TobjH+T (TobjH+T (TbjH+ ∅bjH+T (T ∅T ∅bjH+TobjH+T (T+++jH+T (T1objH+T (T = ∅)∅= ∅)= ∅
1callH+T’ What is T’?

Intuition Behind Simulation (I1 ∪ I2)
• If tunneling is applied to i, two properties inevitably appear at i

56

We track the two properties to find the T’

• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

1objH+T (T = 1objH+T (T =)∅

id1
[D1]

id1
[D2]

id1
[D1]

main
[*]

id1
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

144

H+ ∅+T (T1objH+T (T =)∅bjH+T (T ∅objH+T (T ∅T (T ∅TobjH+T (T ∅T)+H+T (TobjH+T (T ∅T (T)T ∅objH+ ∅T (T ∅H+T (T ∅objH+T ∅objH+)objH+T (T ∅1objH+T (T)H+T (T ∅objH+T (∅T (TobjH+T (TobjH+T (TbjH+ ∅bjH+T (T ∅T ∅bjH+TobjH+T (T+++jH+T (T1objH+T (T = ∅)∅= ∅)= ∅
1callH+T’ What is T’?

foo
[ctx1]

goo
[ctx1]

i

Tunneling is applied

• Property 1: caller and callee methods have the same context

I1

Intuition Behind Simulation (I1 ∪ I2)
• If tunneling is applied to i, two properties inevitably appear at i

57

Property of context tunneled call-sites

• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

1o

main
[*]

1ooo11

foo
[ctx1]

goo
[ctx1]

i

Tunneling is applied

• Property 1: caller and callee method have the same context

• Property 2: different caller contexts imply different callee contexts

ifoo
[ctx2]

goo
[ctx2]

I1II
I2

Intuition Behind Simulation (I1 ∪ I2)
• If tunneling is applied to i, two properties inevitably appear at i

58

Property of context tunneled invocations

1objH+T (T =)∅
1callH+T’ What is T’?

={3,5,6}I1

Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

59

• : caller and callee methods have the same contextI1

1objH+T (T =)∅
1callH+T’ What is T’?

• : caller and callee methods have the same contextI1

={3,5,6}I1

• : different caller ctx imply different callee ctxI2

={3}I2

Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

60

1objH+T (T =)∅
1callH+T’ What is T’?

• : caller and callee methods have the same contextI1

={3,5,6}I1

• : different caller ctx imply different callee ctxI2

={3}I2

I1 ∪ I2 = {3,5,6}

Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

T’ =

61

1objH+T (T =)∅

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

id1
[12]

id1
[13]

main
[*]

id
[13]

foo
[14]

id
[14]

3

3

5,6

12

13

14

id
[12]

1callH+T’ (T’ = {3,5,6})

Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

62

1objH+T (T =)∅

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

id1
[12]

id1
[13]

main
[*]

id
[13]

foo
[14]

id
[14]

3

3

5,6

12

13

14

id
[12]

1callH+T’ (T’ = {3,5,6})

Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

63

=

Exactly the same analyses

1objH+T (T =)∅

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

id1
[12]

id1
[13]

main
[*]

id
[13]

foo
[14]

id
[14]

3

3

5,6

12

13

14

id
[12]

1callH+T’ (T’ = {3,5,6})

Necessity of I3

Intuition Behind Simulation (I1 ∪ I2)
• Suppose given call-graph is produced from 1callH+T’ and infer what T’ is

64

1objH+T (T =)∅

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

• : given object sensitivity produced only one contextI3

 = {5,6,12,13,14}I3

• : caller and callee methods have the same contextI1II
={3,5,6}I1II

• : different caller ctx imply different callee ctxI2II
={3}I2II

Intuition Behind Simulation (I3)
• : Tunneling should be avoided for improving precisionI3

65

• : given object sensitivity produced only one contextI3II
1objH+T (T =)∅

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

 = {5,6,12,13,14}I3

• : caller and callee methods have the same contextI1II
={3,5,6}I1

• : different caller ctx imply different calle ctxI2II
={3}I2

(I1 ∪ I2)∖I3 = {3}T’=

Intuition Behind Simulation
• The inferred tunneling abstraction T’ is a singleton set {3}

66

1objH+T (T =)∅

id1
[D1]

id1
[D2]

main
[*]

id
[D2]

foo
[D3]

id
[D3]

3

3

5,6

12

13

14

id
[D1]

1callH+T’ (T’ = {3})

id1
[12]

id1
[13]

id
[12]

main
[*]

id
[13]

foo
[14]

id
[5]

3

3

6

12

13

14

id
[6]

5

Simulation

Technique 1: Simulation
• With T’, CFA becomes more precise than the given object sensitivity

67

560 580 600 620 640 660 680 700
0

100

200

300

400

500

600

700

• Obj2CFA consists of simulation and simulation-guided learning

xalan

1objH+T

1callH+S

1callH+SL

Simulation

L
ea

rn
in

g

Our Technique : Obj2CFA

Obj2CFA

68

Find an expensive but more precise CFA

• Obj2CFA consists of simulation and simulation-guided learning

560 580 600 620 640 660 680 700
0

100

200

300

400

500

600

700
xalan

1objH+T

1callH+S

1callH+SL

Simulation

L
ea

rn
in

g

Our Technique : Obj2CFA

Obj2CFA

Limitation
Simulation is expensive!

69

• Obj2CFA consists of simulation and simulation-guided learning

560 580 600 620 640 660 680 700
0

100

200

300

400

500

600

700
xalan

1objH+T

1callH+S

1callH+SL

Simulation

L
ea

rn
in

g

Our Technique : Obj2CFA

Obj2CFA

Scalability upper bound

70

• Obj2CFA consists of simulation and simulation-guided learning

560 580 600 620 640 660 680 700
0

100

200

300

400

500

600

700
xalan

1objH+T

1callH+S

1callH+SL

Simulation

L
ea

rn
in

g

Our Technique : Obj2CFA

Obj2CFA

Goal of learning:
Remove the overhead of simulation

71

• Obj2CFA consists of simulation and simulation guided learning

560 580 600 620 640 660 680 700
0

100

200

300

400

500

600

700
xalan

1objH+T

1callH+S

1callH+SL

Simulation

L
ea

rn
in

g

Our Technique : Obj2CFA

Obj2CFA

Given training programs and simulated tunneling abstractions,
learning aims to find a model that produces similar tunneling

abstractions without running the given object sensitivity

72

Goal of learning:
Remove the overhead of simulation

73560 580 600 620 640 660 680 700
0

100

200

300

400

500

600

700

• Obj2CFA consists of simulation and simulation guided learning

xalan

1objH+T

1callH+S

1callH+SL

Simula

L
ea

rn
in

g

Our Technique : Obj2CFA

Obj2CFF

mula

2CFFF22C2 FF2CCCFCFF2CF2 FC22C2CCFFF

ullllmuumumm

Goal of learning:
Remove overhead of simulation

Our Technique : Obj2CFA

1callH+S1ca l Saa Sc +lc Hc HH++l +l Haaa lH+SS++S

2CFAechnique CFAechnique CFAechnique Obj2Cur Techniqu ATechnique 2Obj2Cr Technique Obj2CFr Technique bj2CFAOur Techn 2CFAechnique bj2CFAOur Techn 2CFAechniqueuOur Tec CObj2CFOur Techn Obj2CFr Technique COur Techniq bj2CFOur Techn Obj2CFOur TechO Obj2CFr TechniqueOur On FCechnique : bj2CFAOur Technc u CCechnique : FOur Techn Or CFAechnique C:echniq Or Technique 2h Fbj2CFOur Techn bj2CFAOur Techn AnT bO bj2CFAOur Techn 2CFAechnique Cechnique Obj2CFr Technique COur Techniquechniq : Cbj2CFAOur Techn 2CFAechnique 2CFATechnique Cechnique : Obj2Cur Techniqu Obj2CFOur Techn CFAechnique bj2CFAOur TechnO bT AObj2Cur Techniqu bj2CFAur Techni Obj2Cur Techniqu bj2Cur Techniqu bj2Cur Techniqu CFAechnique
Given training programs and simulated tunneling abstractions,
learning aims to find a model that produces similar tunneling

abstraction without running the given object sensitivity
The learned model will produce tunneling abstractions without

running object sensitivity

Details in paper

Evaluation

74

• Doop

Setting

• Pointer analysis framework for Java

Call-site sensitivity vs Object sensitivity

Context tunneling is included

• Research Question: which one is better?

75

• Doop

• Pointer analysis framework for Java

•

Setting

• Pointer analysis framework for JavaNegative results on CFA have been repeatedly reported on Doop

2009
(OOPSLA)

2011
(POPL)

2013
(PLDI)

2014
(PLDI)

2016
(SAS)

2017
(OOPSLA)

…

76

Setting

• Research Question: which one is better?

Call-site sensitivity vs Object sensitivity

Context tunneling is included

• Doop

• Pointer analysis framework for Java

77

700 720 740 760 780 800 820 840 860
0

100

200

300

400

500

600

700

800 900 1000 1100 1200 1300 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

3obj2H

2objH
1callH

1callH+SL
(ours)

1objH+T : timeout (> 10,800)
2objH : timeout (> 10,800)

pmd jython

Precise

S
ca

la
b

le

Precise

S
ca

la
b

le

• 1callH+SL (ours) is more precise and scalable than the existing object sensitivities

3objH : timeout (> 10,800)

1objH+T
1callH+SL

(ours)

#alarms

an
al

ys
is

 t
im

e
(s

)

an
al

ys
is

 t
im

e
(s

)

#alarms

Call-site Sensitivity vs Object Sensitivity

78

800 900 1000 1100 1200 1300 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

700 720 740 760 780 800 820 840 860
0

100

200

300

400

500

600

700

3obj2H

2objH
1callH

1callH+SL
(ours)

1objH+T : timeout (> 10,800)
2objH : timeout (> 10,800)

pmd jython

Precise

S
ca

la
b

le

Precise

S
ca

la
b

le

• 1callH+SL (ours) is more precise and scalable than the existing object sensitivities

3objH : timeout (> 10,800)

1objH+T
1callH+SL

(ours)

an
al

ys
is

 t
im

e
(s

)

an
al

ys
is

 t
im

e
(s

)
l

i
ti

(
)

#alarms

Call-site Sensitivity vs Object Sensitivity

79

#alarms

800 900 1000 1100 1200 1300 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

700 720 740 760 780 800 820 840 860
0

100

200

300

400

500

600

700

3obj2H

1callH

1callH+SL
(ours)

1objH+T : timeout (> 10,800)
2objH : timeout (> 10,800)

pmd jython

Precise

S
ca

la
b

le

Precise

S
ca

la
b

le

3objH : timeout (> 10,800)

1objH+T
1callH+SL

(ours)

an
al

ys
is

 t
im

e
(s

)

an
al

ys
is

 t
im

e
(s

)
l

i
ti

(
)

Call-site Sensitivity vs Object Sensitivity

State-of-the-art 1-object
sensitivity with tunneling

2objH

• 1callH+SL (ours) is more precise and scalable than the existing object sensitivities

80

#alarms #alarms

800 900 1000 1100 1200 1300 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

700 720 740 760 780 800 820 840 860
0

100

200

300

400

500

600

700

3obj2H

1callH

1callH+SL
(ours)

1objH+T : timeout (> 10,800)
2objH : timeout (> 10,800)

pmd jython

Precise

S
ca

la
b

le

Precise

S
ca

la
b

le

• 1callH+SL (ours) is more precise and scalable than the existing object sensitivities

3objH : timeout (> 10,800)

1objH+T
1callH+SL

(ours)

an
al

ys
is

 t
im

e
(s

)

an
al

ys
is

 t
im

e
(s

)
l

i
ti

(
)

Call-site Sensitivity vs Object Sensitivity

Obj2CFA

Transformed 1-CFA with tunneling via Obj2CFA from 1objH+T

2objH

81

#alarms #alarms

700 720 740 760 780 800 820 840 860
0

100

200

300

400

500

600

700

1objH+T : timeout (> 10,800)
8000

2objH
1callH

1callH+SL
(ours)

2objH : timeout (> 10,800)

pmd jython

Precise

S
ca

la
b

le

Precise

S
ca

la
b

le

• 1callH+SL (ours) is more precise and scalable than the existing object sensitivities

3objH : timeout (> 10,800)

1objH+T
1callH+SL

(ours)

an
al

ys
is

 t
im

e
(s

)

an
al

ys
is

 t
im

e
(s

)

Call-site Sensitivity vs Object Sensitivity

3obj2H

1callH+SL is even more precise than 3obj2H

Precision upper bound of
recent researches on object sensitivity

OOPLSA 2021 OOPLSA 2019

82

#alarms

700 720 740 760 780 800 820 840 860
0

100

200

300

400

500

600

700

800 900 1000 1100 1200 1300 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

3obj2H

2objH
1callH

1callH+SL
(ours)

1objH+T : timeout (> 10,800)
2objH : timeout (> 10,800)

pmd jython

Precise

S
l

b
l

S
ca

la
b

le

Precise

S
ca

la
b

le

• 1callH+SL (ours) is more precise and scalable than the existing object sensitivities

3objH : timeout (> 10,800)

1objH+T
1callH+SL

(ours)

#alarms

an
al

ys
is

 t
im

e
(s

)

2

3

4

an
al

ys
is

 t
im

e
(s

)

Call-site Sensitivity vs Object Sensitivity

Known as a troublesome benchmark
in terms of scalability

83

#alarms

700 720 740 760 780 800 820 840 860
0

100

200

300

400

500

600

700

800 900 1000 1100 1200 1300 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

3obj2H

2objH
1callH

1callH+SL
(ours)

1objH+T : timeout (> 10,800)
2objH : timeout (> 10,800)

pmd jython

Precise

S
l

b
l

S
ca

la
b

le

Precise

S
ca

la
b

le

• 1callH+SL (ours) is more precise and scalable than the existing object sensitivities

3objH : timeout (> 10,800)

1objH+T
1callH+SL

(ours)

an
al

ys
is

 t
im

e
(s

)

2

3

4

an
al

ys
is

 t
im

e
(s

)

Call-site Sensitivity vs Object Sensitivity

1callH+SL successfully analyzed jython

84

#alarms

85

700 720 740 760 780 800 820 840 860
0

100

200

300

400

500

600

700

800 900 1000 1100 1200 1300 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

3obj2H

2objH
1callH

1callH+SL
(ours)

1objH+T : timeout (> 10,800)
2objH : timeout (> 10,800)

pmd jython

Precise

S
ca

la
b

le

Precise

S
ca

la
b

le

• 1callH+SL (ours) is more precise and scalable than the existing object sensitivities

3objH : timeout (> 10,800)

1objH+T
1callH+SL

(ours)

of alarms

an
al

ys
is

 t
im

e
(s

)

an
al

ys
is

 t
im

e
(s

)

Call-site Sensitivity vs Object Sensitivity

• Necessity of learning
• 1callH+S is unable to analyze jython

#alarms

Summary

Thank you
86

• Currently, CFA is known as a bad context

• However, if context tunneling is included,
CFA is not a bad context anymore

• We need to reconsider CFA from now on

• However if t t t li i i l d d

Summary

87

• Currently, CFA is known as a bad context

• W n

• W om now on

Summary

88

• Currently, CFA is known as a bad context

88

• However, if context tunneling is included,
CFA is not a bad context anymore

Summary

Thank you
89

xt

r,
CFA is not a bad context anymore

• We need to reconsider CFA from now on

